

Learning to Adaptively Adjust Fovea Size for Human Eye Inspired Recurrent Neural Network

Alan Van Omen, Sehong Oh

April 26th, 2023

Outline

- 1. Introduction
- 2. Motivation & Related Works
- 3. Methodology
- 4. Experiments
- 5. Conclusion

Introduction

- 1. Human vision and computer vision
 - Computer vision has a different way to see the world from humans
 - Each system has its own pros and cons, and "capacity" and "vulnerability" are the distinct properties that differentiates them

Motivation

1. Computer vision models (CNNs) are vulnerable to adversarial noises^[1]

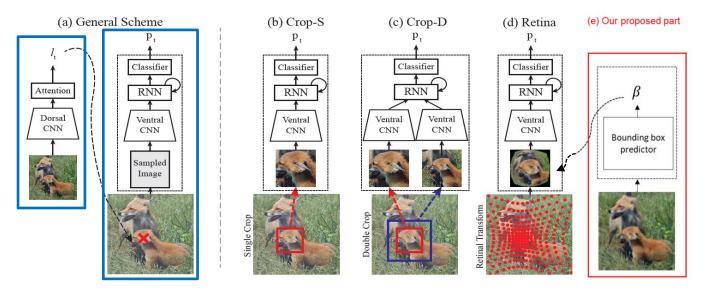
- 2. Human eyes are more robust than computer vision
 - Allowing models to fixate to different image regions can alleviate the effect of adversarial noise [2]
 - Non-uniform spatial sampling and varying receptive fields that mimic the retinal transformation in the primate retina can also improve the robustness against adversarial attacks^[3]
 [1] Aleksander et al. Towards deep learning models resistant to adversarial attacks, 2017.

[2] Ricardo Gattass et al. Visual topography of v2 in the macaque, 1981.

[3] Pouya Bashivan et al. Neural population control via deep image synthesis, 2019.

Methodology

- 1. Dorsal Stream: or the "where" pathway is responsible for processing information related to spatial awareness and motion.
- 2. Ventral stream: or the "what" pathway, is responsible for object recognition, face recognition, and determining the color and shape of objects.



[4] Choi, Minkyu, et al. Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises, 2022

Improvement

1. The hyper-parameter *b* in the model controls the degree of non-uniform sampling for the ventral stream (authors use constant b=12)

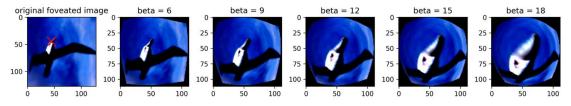
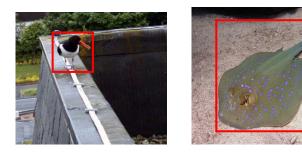
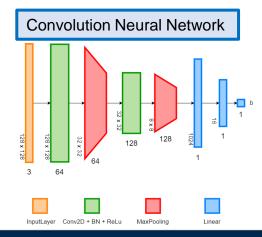


Figure 2. Examples of the effect of b on the retinal transformation, with fixation point centered at red x.

2. We implement 3 methods for adaptively changing the fovea size to improve robustness

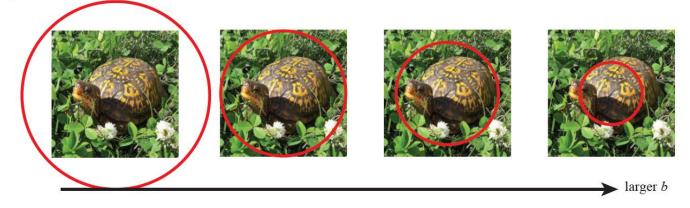
Bounding Box Methods (YOLOv5)





Effect of *b* **on the fovea size**

(a) Size of Fovea



(b) Retinal images

Improvement

1. The hyper-parameter *b* in the model controls the degree of non-uniform sampling for the ventral stream (authors use constant b=12)

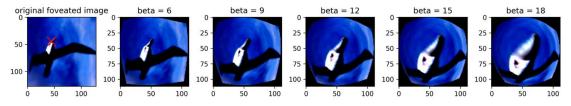
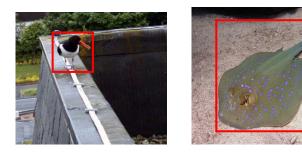
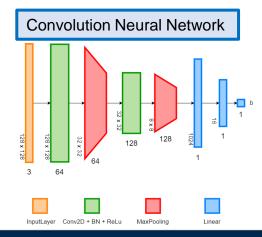


Figure 2. Examples of the effect of b on the retinal transformation, with fixation point centered at red x.

2. We implement 3 methods for adaptively changing the fovea size to improve robustness

Bounding Box Methods (YOLOv5)





Experiments

- Trained four models using various strategies for adapting the fovea size
 - 1. **b=12**: held beta constant like original paper
 - 2. B-CNN: learned beta concurrently in an end-to-end

manner

- 3. **C-BB**: estimated beta from the closest valid bounding box
- 4. L-BB: estimated beta from the largest valid bounding box
- Learned adversarial noise with 100 steps of PGD over 1600 test images

Parameter	Value
batch size	4
optimizer	Adam
initial learning rate	1e-3
epochs	10
retinal sampling grid size	112
time steps (1 fixation per step)	4
default \hat{b}	12

		$\mathrm{ASR}(\epsilon=5e-3)$	
Model	Top-1 Acc	Targeted	Untargeted
b = 12	35.9%	80.0%	80.2%
b-CNN	38.0%	79.6%	82.9%
C-BB	39.8%	78.9%	80.6%
L-BB	28.6%	78.4%	78.9%

Conclusion

- 1. Successfully implemented 3 methods for adaptively setting the fovea size
- 2. Found that C-BB gave slightly higher robustness and better accuracy

Future work

- 1. Explore how to fine-tune bounding box model on target dataset.
- 2. Optimize the model efficiency and memory usage to allow for larger batch sizes and better stability.
- 3. Explore using some reward to promote robustness for learning beta in the end-toend manner.

Reference

- [1] Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu. Towards deep learning models resistant to adversarial attacks. arXiv preprint arXiv:1706.06083, 2017.
- [2] Ricardo Gattass, CG Gross, and JH Sandell. Visual topography of v2 in the macaque. Journal of Comparative Neurology, 201(4):519–539, 1981.
- [3] Pouya Bashivan, Kohitij Kar, and James J DiCarlo. Neural population control via deep image synthesis. Science, 364(6439), 2019.
- [4] Choi, Minkyu, et al. "Human Eyes Inspired Recurrent Neural Networks are More Robust Against Adversarial Noises." *arXiv preprint arXiv:2206.07282* (2022).

Q & A

Thank you !

