

RMA: RAPID MOTOR ADAPTATION FOR LEGGED ROBOTS

Ashish Kumar, Zipeng Fu, Deepak Pathak, Jitendra Malik

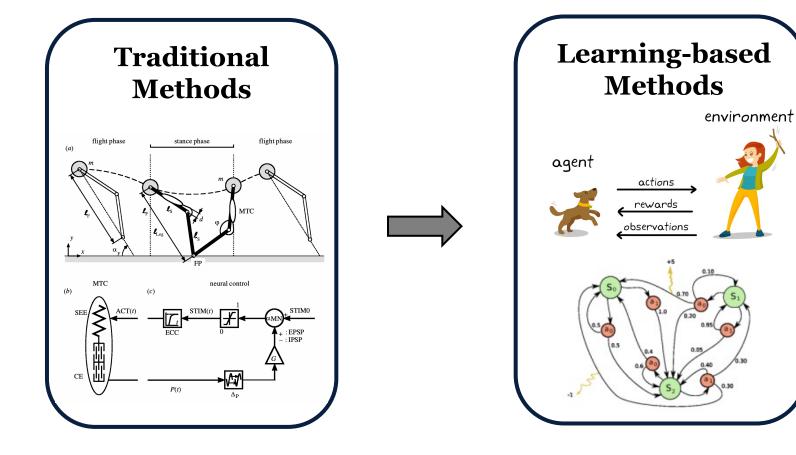
Presented by

Youren Zhang | yourenz@umich.edu

Legged robots are a type of mobile robot which use *articulated limbs*, such as leg mechanisms, to provide locomotion.

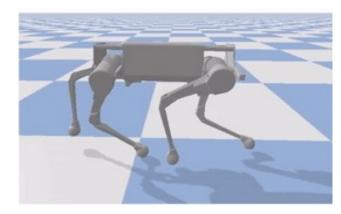
Quadruped robots

CONTROLLER



- Require considerable expertise on the part of the human designer
- Train in **simulation**, then transfer to the real-world using sim-to-real techniques

SIM-TO-REAL



Generalization

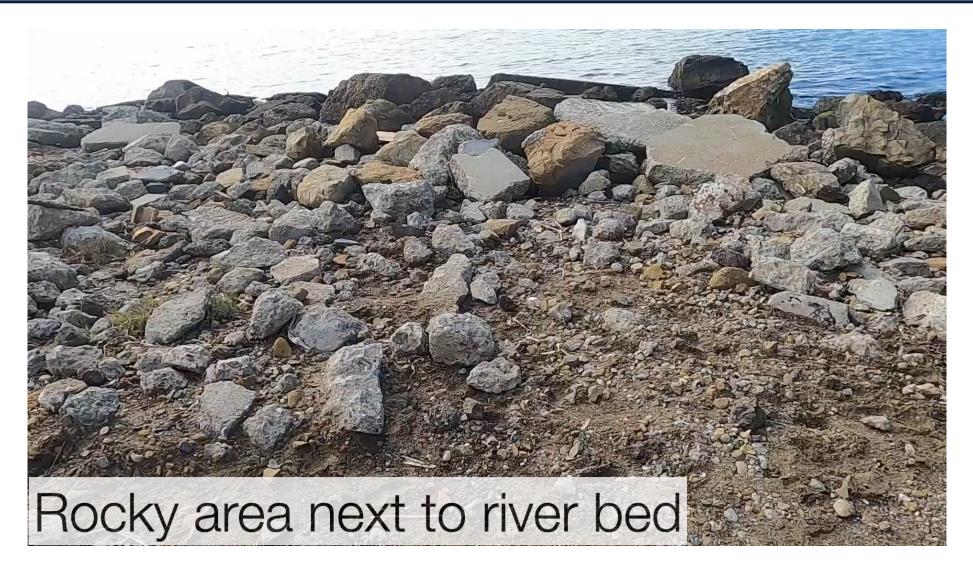
Simulation

- The physical robot and its model in the simulator differ significantly
- Real-world terrains vary considerably
- The simulator fails to accurately capture the physics of the real world

For <u>quadruped</u> robots To solve generalization problem, the authors proposed **RAPID MOTOR ADAPTATION**

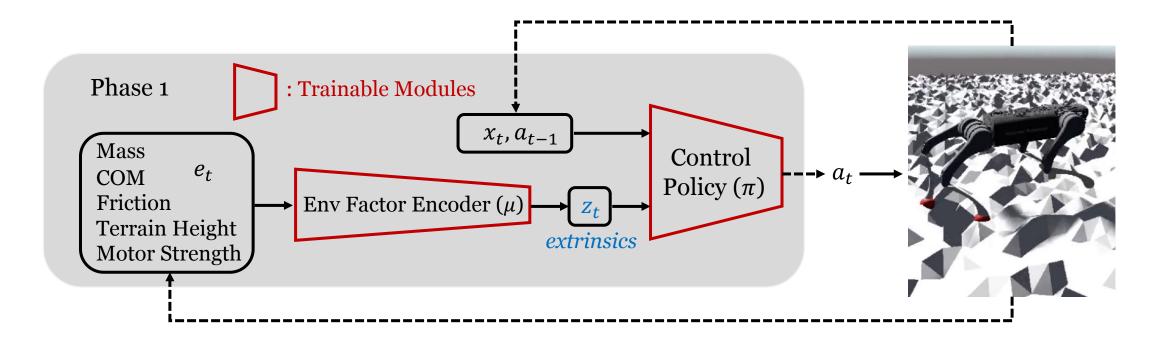
Learned entirely in *simulation* (why?) without using any domain knowledge Deploy *without* fine-tuning

RAPID MOTOR ADAPTATION



Phase 1: Jointly train policy π and environmental factor encoder μ via Reinforcement Learning in simulation

 $a_t = \pi(x_t, a_{t-1}, z_t) = \pi(x_t, a_{t-1}, \mu(e_t))$

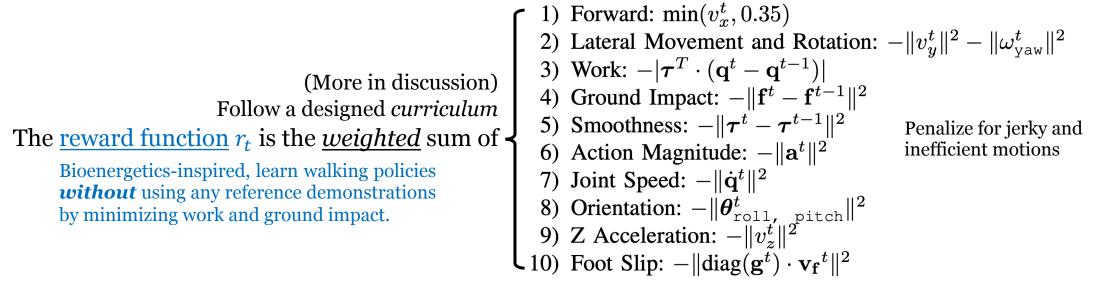


EECS ELECTRICAL ENGINEERING UNIVERSITY OF MICHIGAN

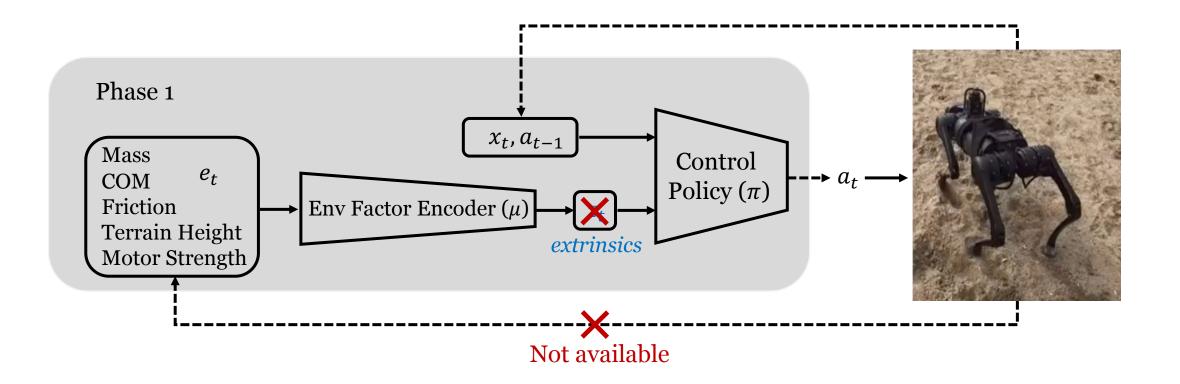
Phase 1: Jointly train policy π and environmental factor encoder μ via Reinforcement Learning in simulation

$$J(\pi) = \mathbb{E}_{\tau \sim p(\tau|\pi)} \left[\sum_{t=0}^{T-1} \gamma^t r_t \right]$$

where $\tau = \{(x_0, a_o, r_0), (x_1, a_1, r_1), ...\}$ is the trajectory of the agent when executing policy π , γ is the hyperparameter, which is set to 0.998 according to the supplementary.

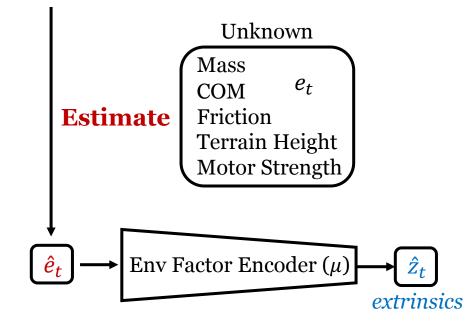


However, environmental factors are *not* available when deploying.

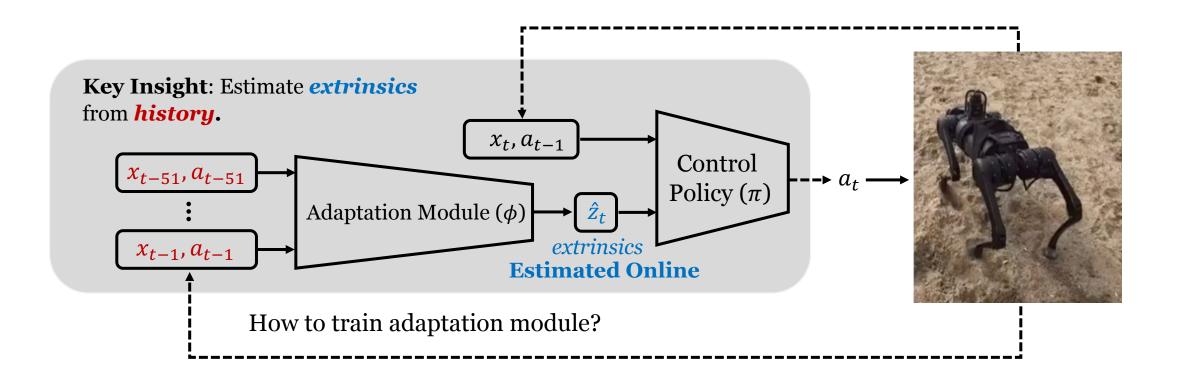


How to Deploy

The task of System Identification is Very Hard!!

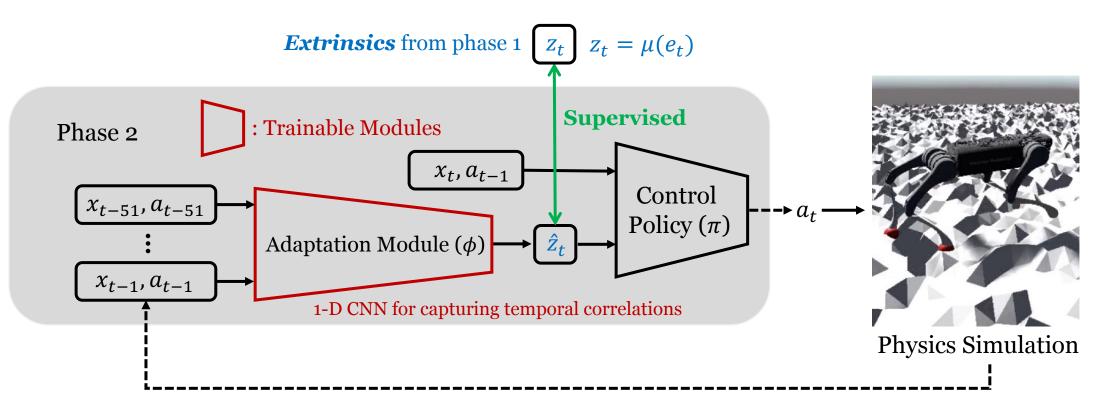


Instead of system identification, directly estimate the extrinsics.



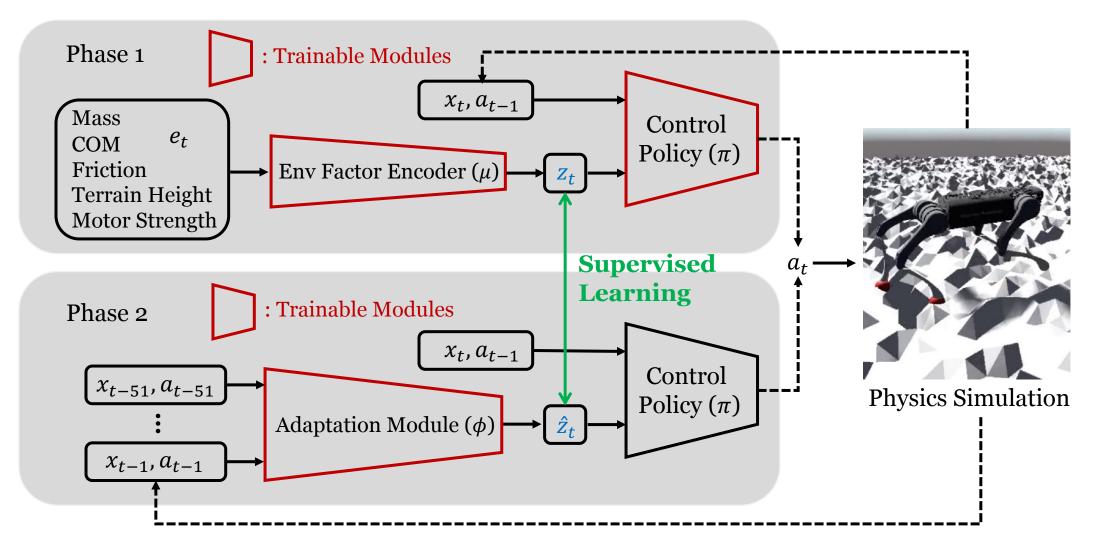
Phase 2: Train adaptation module ϕ via Supervised Learning in simulation, k = 50 (0.5s) in experiments

 $\hat{z}_t = \phi(x_{t-k:t-1}, a_{t-k:t-1})$



EECS ELECTRICAL ENGINEERING AND COMPUTER SCIENCE UNIVERSITY OF MICHIGAN

TRAINING SCHEME

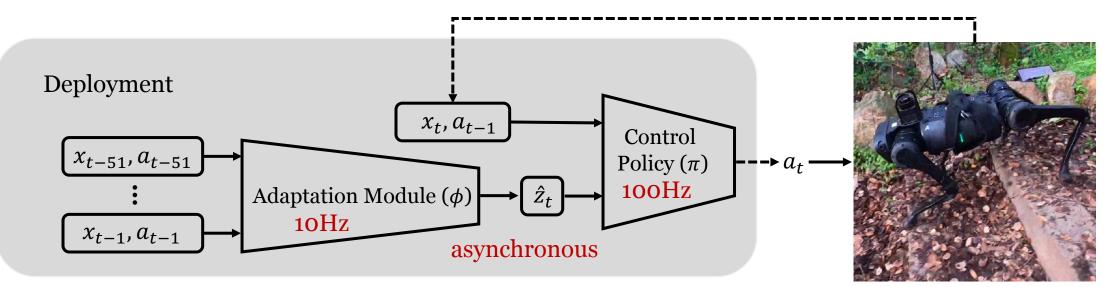



```
Phase 1 Randomly initialize the base policy \pi;
 Randomly initialize the environmental factor encoder
 \mu; Empty replay buffer D_1;
for 0 \leq \operatorname{itr} \leq N_{\operatorname{itr}}^1 do
    for 0 \le i \le N_{env} do
          x_0, e_0 \leftarrow \text{envs}[i].\text{reset}();
         for 0 < t < T do
             z_t \leftarrow \mu(e_t);
             a_t \leftarrow \pi(x_t, a_{t-1}, z_t);
             x_{t+1}, e_{t+1}, r_t \leftarrow \operatorname{envs}[i].\operatorname{step}(a_t);
             Store ((x_t, e_t), a_t, r_t, (x_{t+1}, e_{t+1})) in D_1;
          end
     end
     Update \pi and \mu using PPO [48];
     Empty D_1;
end
```

Phase 2 Randomly initialize the adaptation module ϕ parameterized by θ_{ϕ} ; Empty mini-batch D_2 ; for $0 \leq \operatorname{itr} \leq N_{\operatorname{itr}}^2$ do for $0 < i < N_{env}$ do $x_0, e_0 \leftarrow \text{envs}[i].\text{reset}()$: for 0 < t < T do $\hat{\mathbf{z}_{t}} \leftarrow \phi(x_{t-k:k}, a_{t-k-1:k-1});$ $z_t \leftarrow \mu(e_t);$ $a_t \leftarrow \pi(x_t, a_{t-1}, \hat{\mathbf{z}_t});$ $x_{t+1}, e_{t+1}, _ \leftarrow \operatorname{envs}[i].\operatorname{step}(a_t);$ Store (\hat{z}_t, z_t) in D_2 ; end end $\theta_{\phi} \leftarrow \theta_{\phi} - \lambda_{\theta_{\phi}} \nabla_{\theta_{\phi}} \frac{1}{T N_{env}} \sum \|\hat{z}_t - z_t\|^2;$ Empty D_2 ; end

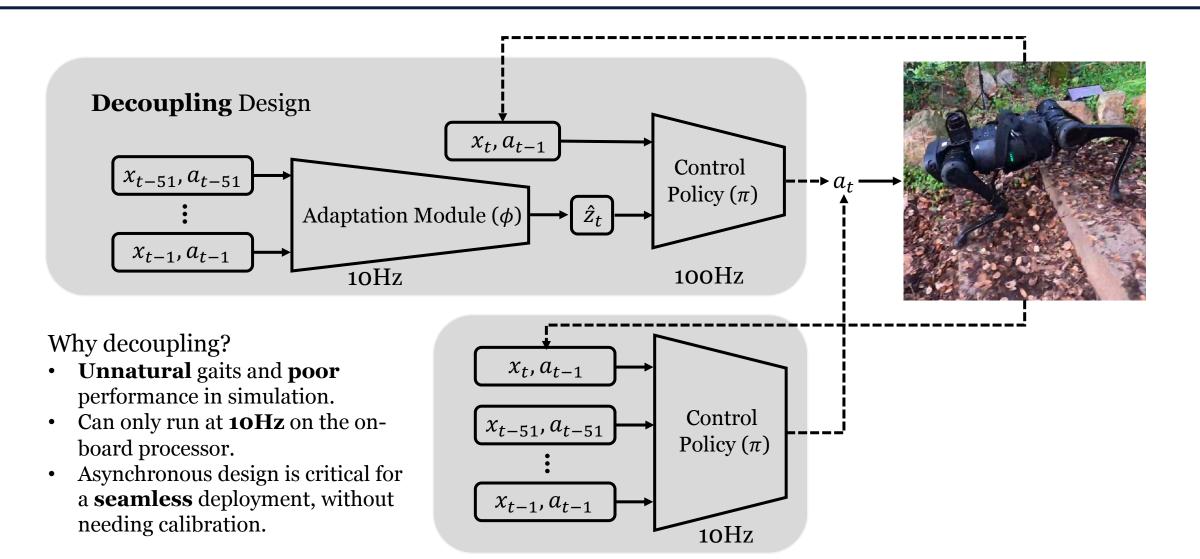
EECS ELECTRICAL ENGINEERING UNIVERSITY OF MICHIGAN

Deployment: The adaption module and the control policy run <u>asynchronously</u>. control policy uses most recent \hat{z}_t



Intuition: \hat{z}_t changes relatively infrequently in the real-world.

NECESSITY OF ADAPTATION MODULE



EECS ELECTRICAL ENGINEERING UNIVERSITY OF MICHIGAN

EXPERIMENT

Environmental Variation

Parameters	Training Range	Testing Range
Friction	[0.05, 4.5]	[0.04, 6.0]
K_p	[50, 60]	[45, 65]
K_d	[0.4, 0.8]	[0.3, 0.9]
Payload (Kg)	[0, 6]	[0, 7]
Center of Mass (cm)	[-0.15, 0.15]	[-0.18, 0.18]
Motor Strength	[0.90, 1.10]	[0.88, 1.22]
Re-sample Probability	0.004	0.01

TABLE I: Ranges of the environmental parameters.

Baselines

- A1 Controller: Default controller
- Robustness through Domain Randomization (Robust): The base policy is trained without z_t to be robust to the variations in the training range
- Expert Adaptation Policy (**Expert**): In simulation, we can use the true value of the extrinsics vector z_t . This is an upper bound to the performance of RMA.
- **RMA w/o Adaptation**: Run adaptation module for the first timestamp and then *freeze* it.
- **System Identification**: Directly predict the environmental factor e^t .
- Advantage Weighted Regression for Domain Adaptation (**AWR**): Optimize z^t offline using AWR by using real-world rollouts of the policy in the testing environment.

Rapid Motor Adaptation for Legged Robots

Ashish Kumar UC Berkeley Zipeng Fu CMU Deepak Pathak CMU Jitendra Malik UC Berkeley/FAIR

Robotics: Science and Systems 2021

Rapid Motor Adaptation for Legged Robots

Ashish Kumar UC Berkeley Zipeng Fu CMU Deepak Pathak CMU Jitendra Malik UC Berkeley/FAIR

Robotics: Science and Systems 2021

Gait pattern

Torque of knee

Components of extrinsics

Rapid Motor Adaptation for Legged Robots

Ashish Kumar UC Berkeley Zipeng Fu CMU Deepak Pathak CMU Jitendra Malik UC Berkeley/FAIR

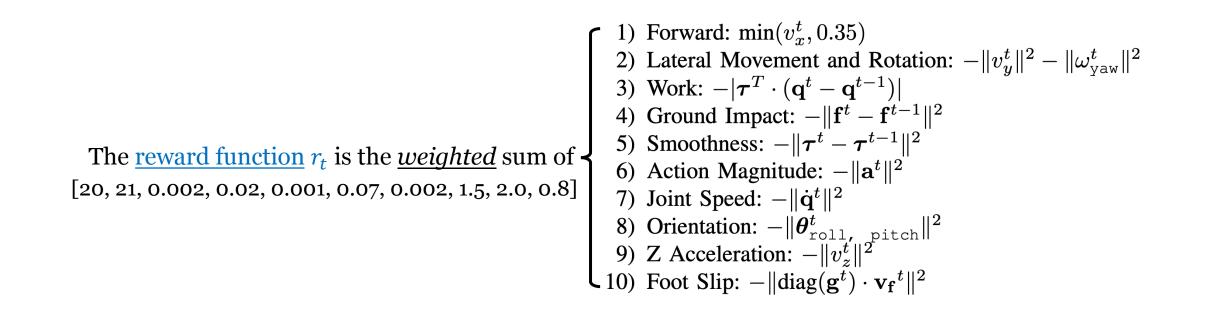
Robotics: Science and Systems 2021

Results in simulation

	Success (%)	TTF	Reward	Distance (m)	Samples	Torque	Smoothness	Ground Impact
Robust [52, 40]	62.4	0.80	4.62	1.13	0	527.59	122.50	4.20
SysID [57]	56.5	0.74	4.82	1.17	0	565.85	149.75	4.03
AWR [41]	41.7	0.65	4.17	0.95	40k	599.71	162.60	4.02
RMA w/o Adapt	52.1	0.75	4.72	1.15	0	524.18	106.25	4.55
RMA	73.5	0.85	5.22	1.34	0	500.00	92.85	4.27
Expert	76.2	0.86	5.23	1.35	0	485.07	85.56	3.90

TABLE II: Simulation Testing Results: We compare the performance of our method to baseline methods in simulation. Our train and test settings are listed in Table I. We resample the environment parameters within an episode with a re-sampling probability of 0.01 per step during testing. Baselines and metrics are defined in Section V. The numbers reported are averaged over 3 randomly initialized policies and 1000 episodes per random initialization. RMA beats the performance of all the baselines, with only a slight degradation in performance compared to the Expert.

DISCUSSION



If naively train the agent with the above reward function, it learns to **stay in place** because of the penalty terms on the movement of the joints.

To prevent this collapse, the training starts with very small penalty coefficients, and then **gradually** increase the strength of these coefficients using a fixed curriculum.

@83_f3 For the training curriculum, ...

I believe this is an effective method to maintain the reward function without having the collapse. However, I wonder if there are <u>better ways</u> to define the reward function or training curriculum, so that the agent is more "motivated" to move.

@ One Reply of 83_f3

In [1], instead of varying the rewards, the researchers varied the simulation itself to accommodate the robot's current skill level. But from what I remember, this involved hand-designing a measure of "difficulty", which likely took a lot of effort compared to implementing a scaling reward function.

@83_f5

One thought on this work: the reward function seems **highly hand-crafted**. I wonder if the authors tried simpler reward functions and did not see good performance?

In general, it seems like there is no good way to provide general enough rewards (from a human perspective) for these types of task-specific RL problems. I wonder if over time we will develop models that can for example take natural language instructions and learn behaviors that satisfy said instructions. Curiosity-based learning seems to work to some extent, but without any specific reward you might end up with a robot that's really good at doing backflips instead of one that can walk.

THANKS!