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Motivation

= Learning to perform tasks by imitating humans

= Robot needs to figure out whether behavior is similar to human behavior

= Self supervised learning from unlabeled videos without any provided
correspondences

= Learning from third person views or observations

Sermanet, Pierre, Corey Lynch, Jasmine Hsu, and Sergey Levine. ‘Time-Contrastive Networks: Self-Supervised Learning from Multi-View Observation’. CoRR abs/1704.06888 (2017)



Motivation

Imitation Learning
Intuition

https://www.standupcomedyclinic.com/5-reasons-to-use-imitation-and-emulation-to-learn-stand-up-comedy/



Introduction

Modeling human dynamics using time contrastive networks

Learning representations and robotic behaviours from unlabeled videos and multiple
viewpoints

Representations used to imitate human poses and object interactions

Addressed through self supervision and multi-viewpoint representation learning



Introduction

3rd-person 1st-person Nearest Neighbors

Observation multi-view TCN  single-view TCN  Shuffle & Learn
[Misra et al. 16]
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Related Work

Imitation Learning : Mirror Neurons

Humans are able to learn by imitation

Group of specialized neurons that mimic the behavior and actions of others

Allows humans to mentally simulate an observation

Viewpoint invariance crucial to imitation



Related Work

Imitation Learning : Mirror Neurons

https://www.youtube.com/watch?time_continue=11&v=qSRFVE0Z8Wg&embeds_euri=https%3A%2F %2Fdocs.google.com%2F&embeds_origin=https%3A%2F%2Fdocs.google.com&source_ve
path=MjM4NTE&feature=emb_title



Related Work

Imitation Learning in
robotics

Two Broad Approaches :

Direct : Behavioral cloning - supervised training of policy by my learning to map
state to actions.

Indirect : Inverse RL - expert demonstrations are used to learn the unknown reward
functions, then derive a optimal policy



Behavior Cloning

Expert trajectory
Learned Policy
No data on i :
how to recover i

Slide borrowed from : https://www.andrew.cmu.edu/course/10-703/slides/Lecture_Imitation_supervised-Nov-5-2018.pdf



Related Work

= Kinesthetic demonstrations or teleoperation

Demonstrations

- Before teleoperation, we require human operator
‘to spread five fingers for initialization

Calinon, Sylvain, Florent Guenter, and Aude Billard. ‘On Learning, Representing, and Generalizing a Task in a Humanoid Robot'. IEEE Transactions on Systems, Man, and Cybernetics, Part

B (Cybernetics) 37, no. 2 (2007): 286-98. https://doi.org/10.1109/TSMCB.2006.886952
Qin, Yuzhe, Hao Su, and Xiaolong Wang. ‘From One Hand to Multiple Hands: Imitation Learning for Dexterous Manipulation from Single-Camera Teleoperation’. ArXiv [Cs.RO], 2023. arXiv.

http://arxiv.org/abs/2204.12490
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Related Work

Self-Supervised Representation Learning

= Goal of contrastive learning : positive and negative pairs

. Triplet Loss
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Related Work

Shuffle and Learn

(a) Data Sampling (b) Triplet Siamese network for sequence
verification
Input Tuple 2. AlexNet architecture
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Methodology - Object Interaction
Model - Multiview TCN

Triplet loss
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Methodology - Object Interaction
Model - Multiview TCN

Learns disentangled representations without labels

Learns viewpoint, scale, occlusion, motion-blur, lighting and background invariance
Visual changes over time modeled by temporal competition by neighboring frames
Correspondences between different agents

Attributes pertinent to the task



Methodology- Object Interaction
Model - Single View TCN

Triplet loss
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ImageNet Pre-Training

Deep Network used - InceptionNet
Pre-trained on ImageNet

Tasks used objects that were present in ImageNet



Learning Robotic Behaviors using RL

Reward Function - Distance between TCN embedding of human
demonstration and robot camera images

Policy update using implicit reward function

Enables learning of object interaction skills directly from videos



Methodology - Object Interaction
Model - Multiview TCN

Step 1: Learn representations Step 2: Learn policies
Reinforcement
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Resulting Policies
Pouring Task

Learning to imitate, from video, without supervision

3rd-person observation



Resulting Policies
Simulated Dish Rack Task

Step 1: Learn representations Step 2: Learn policies
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Results : Qualitative (Nearest Neighbor Imitation)

drd-person  imitating] 1st-person Nearest Neighbors
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[Misra et al. 16]



Results:Quantitative

Learning Object Interactions
Robot Pouring Task
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Fig. 7: Learning progress of the pouring task, using a single 3rd-
person human demonstration, as shown in Fig. 6. This graph reports
the weight in grams measured from the target recipient after each
pouring action (maximum weight is 189g) along with the standard
deviation of all 10 rollouts per iteration. The robot manages to
successfully learn the pouring task using the multi-view TCN model
after only 10 iterations.



Results:Quantitative

Model Selection

Method alignment | classif. | training
error error | iteration
Random 28.1% 54.2% -
Inception-ImageNet 29.8% 51.9% -
shuffle & learn [31] 22.8% 27.0% 575k
single-view TCN (triplet) 25.8% 24.3% 266k
multi-view TCN (npairs) 18.1% 22.2% 938k
multi-view TCN (triplet) 18.8% 21.4% 397k
multi-view TCN (lifted) 18.0% 19.6% 119k

TABLE I: Pouring alignment and classification errors: all models
are selected at their lowest validation loss. The classification error
considers 5 classes related to pouring detailed in Table II.



Results:Quantitative

Detailed Attribute Classification Errors

Method hand within container liquid recipient
contact pouring angle 18 has
with container distance flowing liquid
container
Random 49.9% 48.9% 74.5% 49.2% 48.4%
Imagenet Inception 47.4% 45.2% 71.8% 48.8% 49.2%
shuffle & learn 17.2% 17.8% 46.3% 25.7% 28.0%
single-view TCN (triplet) 12.6% 14.4% 41.2% 21.6% 31.9%
multi-view TCN (npairs) 8.0% 9.0% 35.9% 24.7% 35.5%
multi-view TCN (triplet) 7.8% 10.0% 34.8% 22.7% 31.5%
multi-view TCN (lifted) 7.8% 9.0% 35.4% 17.9% 27.7T%



Direct Human Pose Estimation

Implicit mapping between human and robot poses
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Methodology- Human Pose
Model - MultiView TCN
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Results

Self-Regression for human pose estimation

Supervision Robot joints distance error %
Random (possible) joints 42.4 £+ 0.1
Self 38.8 0.1
Human 33.4+04
Human + Self 33.0£0.5
TC + Self 32.1£0.3
TC + Human 29.7+£0.1
TC + Human + Self 29.51+0.2

TABLE III: Imitation error for different combinations of su-
pervision signals. The error reported is the joints distance between
prediction and groundtruth. Note perfect imitation is not possible.



Results

Observation Simulation Real Robot

End-to-end Self-Supervision
(no human supervision)



Discussion




Discussion #1

- @95 f1:

= Self-regression seems similar to the way in which humans can relate their actions to
perception.

= Connection to Affordance Prediction?



Discussion #2

Limitation : TCN Embedding is task specific.

What kind of changes would we need to make this TCN embedding task agnostic?
Or extend it for multiple tasks?



Discussion #3

Why is there a disparity between the performance of single view and multiview
TCN?

@95 _f6:

Animals live entirely in first-person, yet are still able to handle this mapping without
ever being provided with this type of data. | wonder what the difference or key
factors are here that allow us to perform that mapping (at least to a point, after
enough development)



Thank You!




