

## MAML: Model-Agnostic Meta-Learning for Fast Adaptation for Deep Networks

Chelsea FinnPieter AbbeelSergey LevinePresented by Zixuan Huang

### Motivation

- Today's machine learning accomplishes numerous challenging tasks
- Specialists
- Learn one task in one environment from scratch
  - Take long to master new tasks!







## Motivation

- Humans are generalists that learn and adapt quickly
- We're able to
  - Learn new skills
  - Adapt to new environment
  - Recognize new objects
- In a few shots









### Motivation

- With past experiences and prior knowledges, we figure out how to learn more efficiently
- Meta-learning: learning to learn
- How do we equip a ML model with such capability?





# How does meta-learning work? An example

Given 1 example of 5 classes:



training data  $\mathcal{D}_{\mathrm{train}}$ 

#### Classify new examples



test set  $\mathbf{x}_{test}$ 



# How does meta-learning work? An example



Can replace image classification with regression, skill learning, language generation and etc.



## Problem setup | Meta Learning

Given data from  $\mathcal{T}_1, ..., \mathcal{T}_n$  , solve new task  $\mathcal{T}_{\text{test}}$  more quickly / proficiently / stably

<u>Key assumption</u>: meta-training tasks and meta-test task drawn i.i.d. from same task distribution  $\mathcal{T}_1, \dots, \mathcal{T}_n \sim p(\mathcal{T}), \mathcal{T}_j \sim p(\mathcal{T})$ 

Like before, tasks must share structure.



#### Comparison to supervised learning



Why is this view useful? Reduces the meta-learning problem to the design & optimization of *f*.



## Prior works

- Learning an update function or update rule
  - LSTM optimizer (Learning to learn by gradient descent by gradient descent)
  - Meta LSTM optimizer (Optimization as a model for few-shot learning)
- Few shot (or meta) learning for specific tasks
  - Generative modeling (Neural Statistician)
  - Image classification (Matching Net., Prototypical Net.)
  - Reinforcement learning (Benchmarking deep reinforcement learning for continuous control)
- Memory-augmented model
  - Learning an RNN that ingests experience



# MAML | Overview

- Model-agnostic
  - Compatible with any model trained with gradient descent
- General
  - Applicable to a variety of different learning problems, including classification, regression, and reinforcement learning.
- Optimization-based
  - An explicit optimization procedure is embedded



## MAML | Intuition

- Some internal representations are more transferrable than others.
- Desired model parameter set is  $\theta$  such that:
  - Applying one (or a small # of) gradient step to θ on a new task will produce optimal behavior
- Find  $\theta$  that commonly decreases loss of each task after adaptation.





## MAML | Objective



Key idea: Over many tasks, learn parameter vector  $\theta$  that transfers via fine-tuning



# MAML | Algorithm

- 1. Sample task  $\mathcal{T}_i$  (or mini batch of tasks)
- 2. Sample disjoint datasets  $\mathcal{D}_i^{\mathrm{tr}}, \mathcal{D}_i^{\mathrm{test}}$  from  $\mathcal{D}_i$
- 3. Optimize  $\phi_i \leftarrow \theta \alpha \nabla_\theta \mathcal{L}(\theta, \mathcal{D}_i^{\mathrm{tr}})$
- 4. Update  $\theta$  using  $\nabla_{\theta} \mathcal{L}(\phi_i, \mathcal{D}_i^{\text{test}})$

#### MAML | Second-order gradient

$$\begin{split} \theta &\leftarrow \theta - \beta \nabla_{\theta} \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}'}) & (\text{Recall: } \theta_{i}' = \theta - \alpha \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta})) \\ &= \theta - \beta \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \nabla_{\theta} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}'}) & (\mathcal{L} \text{ is differentiable}) \\ &= \theta - \beta \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} (\nabla_{\theta} \theta_{i}') \nabla_{\theta_{i}'} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}'}) \\ &= \theta - \beta \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \underbrace{\left(I - \alpha \nabla_{\theta}^{2} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta})\right)}_{\mathcal{T}_{\theta_{i}'} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}'})} \\ &= \theta - \beta \sum_{\mathcal{T}_{i} \sim p(\mathcal{T})} \underbrace{\left(I - \alpha \nabla_{\theta}^{2} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta})\right)}_{\mathcal{T}_{\theta_{i}'} \mathcal{L}_{\mathcal{T}_{i}}(f_{\theta_{i}'})} \\ &= \text{AdML suggest 1st order approximation.} \end{split}$$



### MAML | Second-order gradient

 $\theta \leftarrow \theta - \beta \nabla_{\theta} \quad \sum \quad \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$  $\mathcal{T}_i \sim p(\mathcal{T})$  $= \theta - \beta \sum \nabla_{\theta} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$  $\mathcal{T}_i \sim p(\mathcal{T})$  $= \theta - \beta \quad \sum \quad (\nabla_{\theta} \theta'_i) \nabla_{\theta'_i} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i})$  $\mathcal{T}_i \sim p(\mathcal{T})$  $= \theta - \beta \sum \left[ (I - \alpha \nabla_{\theta}^2 \mathcal{L}_{\mathcal{T}_i}(f_{\theta})) \nabla_{\theta'_i} \mathcal{L}_{\mathcal{T}_i}(f_{\theta'_i}) \right]$  $\mathcal{T}_i \sim p(\mathcal{T})$  In 1st order approximation, we regard this as identity matrix *I*.



( $\mathcal{L}$  is differentiable)



### Experiments

- Supervised regression
- Supervised classification
- Reinforcement Learning



- Sinusoid function:
  - Amplitude (A) and phase ( $\phi$ ) are varied between tasks
    - A in [0.1, 0.5]
    - φ in [0, π]
  - x in [-5.0, 5.0]
- Loss function: Mean Squared Error (MSE)
- Regressor: 2 hidden layers with 40 units and ReLU
- Training
  - Use only 1 gradient step for learner
  - *K* = 5 or 10 example (5-shot learning or 10-shot learning)
  - Fixed step size (a=0.01) for Adam optimizer.



The red line is ground truth. Fit this sine function with only few (10) samples.





Above plots are the pre-trained function of two models. (The prediction of meta-parameter of MAML, The prediction of co-learned parameter of vanilla multi-task learning)





After 1 gradient step update.





After 10 gradient step update.



## MAML only requires 1 gradient step



Vanilla pretrained model adapted slowly, but, the MAML method quickly adapted **even in one gradient step**.



### Performance of meta model



- The performance of the-meta parameters was not improved much in training.
- However, the performance of the single gradient updated parameters started on meta-parameters improved as training progressed.



### Few-shot classification

- Omniglot (Lake et al., 2012)
  - 50 different alphabets, 1623 characters.
  - 20 instances for each characters were drawn by 20 different people.
  - 1200 for training, 423 for test.
- Mini-Imagenet (Ravi & Larochelle, 2017)
  - Classes for each set: train=64, validation=12, test=24.



### Few-shot classification

#### MAML outperforms methods that are specially designed for this task

|                                               | 5-way A                   | ccuracy                   | 20-way Accuracy           |                         |
|-----------------------------------------------|---------------------------|---------------------------|---------------------------|-------------------------|
| Omniglot (Lake et al., 2011)                  | 1-shot                    | 5-shot                    | 1-shot                    | 5-shot                  |
| MANN, no conv (Santoro et al., 2016)          | 82.8%                     | 94.9%                     | _                         | _                       |
| MAML, no conv (ours)                          | $89.7 \pm \mathbf{1.1\%}$ | $97.5 \pm \mathbf{0.6\%}$ | _                         | _                       |
| Siamese nets (Koch, 2015)                     | 97.3%                     | 98.4%                     | 88.2%                     | 97.0%                   |
| matching nets (Vinyals et al., 2016)          | 98.1%                     | 98.9%                     | 93.8%                     | 98.5%                   |
| neural statistician (Edwards & Storkey, 2017) | 98.1%                     | 99.5%                     | 93.2%                     | 98.1%                   |
| memory mod. (Kaiser et al., 2017)             | 98.4%                     | 99.6%                     | 95.0%                     | 98.6%                   |
| MAML (ours)                                   | $98.7\pm\mathbf{0.4\%}$   | $99.9 \pm \mathbf{0.1\%}$ | $95.8 \pm \mathbf{0.3\%}$ | $98.9\pm\mathbf{0.2\%}$ |

|                                             | 5-way Accuracy              |                             |  |
|---------------------------------------------|-----------------------------|-----------------------------|--|
| MiniImagenet (Ravi & Larochelle, 2017)      | 1-shot                      | 5-shot                      |  |
| fine-tuning baseline                        | $28.86 \pm 0.54\%$          | $49.79 \pm 0.79\%$          |  |
| nearest neighbor baseline                   | $41.08 \pm 0.70\%$          | $51.04 \pm 0.65\%$          |  |
| matching nets (Vinyals et al., 2016)        | $43.56 \pm 0.84\%$          | $55.31 \pm 0.73\%$          |  |
| meta-learner LSTM (Ravi & Larochelle, 2017) | $43.44 \pm 0.77\%$          | $60.60 \pm 0.71\%$          |  |
| MAML, first order approx. (ours)            | $48.07 \pm \mathbf{1.75\%}$ | $63.15 \pm \mathbf{0.91\%}$ |  |
| MAML (ours)                                 | $48.70 \pm \mathbf{1.84\%}$ | $63.11 \pm \mathbf{0.92\%}$ |  |

## **Reinforcement learning**

- rllab benchmark suite
- Neural network policy with two hidden layers of size 100 with ReLU
- Gradients updates are computed using vanilla policy gradient (REINFORCE) and trust-region policy (TRPO) optimization as meta-optimizer.
- Comparison
  - Pretraining one policy on all of the tasks and fine-tuning
  - Training a policy from randomly initialized weights
  - Oracle policy



## **Reinforcement learning**

#### • 2d navigation



| num. grad steps | 0      | 1      | 2     | 3     |
|-----------------|--------|--------|-------|-------|
| context vector  | -42.42 | -13.90 | -5.17 | -3.18 |
| MAML (ours)     | -40.41 | -11.68 | -3.33 | -3.23 |





## **Reinforcement learning**

- Locomotion
  - High-dimensional locomotion tasks with the MuJoCo simulator



| num. grad steps | 0      | 1             | 2      | 3      |
|-----------------|--------|---------------|--------|--------|
| context vector  | -40.49 | -44.08        | -38.27 | -42.50 |
| MAML (ours)     | -50.69 | <b>293.19</b> | 313.48 | 315.65 |



## Conclusion

- 1. MAML is a meta learning technique that reuses past experiences to achieve fast adaptation on new tasks.
- 2. It's simple, model-agnostic, and generally applicable to many tasks such as classification, regression and RL.
- 3. It can be viewed from:
  - **1.** Feature learning standpoint: building an internal representation that is broadly suitable for many tasks
  - 2. Dynamical system standpoint: Maximizing the sensitivity of loss function with respect to the parameters.



#### Discussion

- Multi-task Learning vs Meta Learning.
  - Why don't we learn a single set of weights that are applicable to many tasks?
- Assumption of Meta Learning.
  - Meta Learning assumes the tasks during training and test are drawn from the same distribution. But in reality, it's inevitable that we encounter tasks that are out-of-distribution. In this case, is MAML still going to work?

#### Continuous setting

- MAML assumes access to an offline training dataset
- What if the training data come in sequentially?
- How to fight against catastrophic forgetting?

