RL² FAST REINFORCEMENT LEARNING VIA SLOW REINFORCEMENT LEARNING

Presenters : Kshama Nitin Shah , Kemmannu Vineet Rao

Duan, Yan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. 'RL2: Fast Reinforcement Learning via Slow Reinforcement Learning'. ArXiv [Cs.Al], 2016. arXiv. http://arxiv.org/abs/1611.02779

Motivation

Animals learn new tasks in few trials

Usage of prior knowledge to learn new tasks quickly

Duan, Yan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter Abbeel. 'RL2: Fast Reinforcement Learning via Slow Reinforcement Learning'. *ArXiv* [Cs.Al], 2016. arXiv. <u>http://arxiv.org/abs/1611.02779</u> https://www.piedmont.org/living-better/the-mind-body-benefits-of-learning-a-new-skill

Motivation RL is slow

Bellemare, Marc G., Sriram Srinivasan, Georg Ostrovski, Tom Schaul, David Saxton, and Rémi Munos. 'Unifying Count-Based Exploration and Intrinsic Motivation'. CoRR abs/1606.01868 (2016)

Introduction

- Build an agent that can solve new and difficult tasks quickly

Addresses the problem of sample inefficiency in RL

Meta learning algorithm, objective : Learning Process

Agent - designed as a recurrent neural network

Generalizes to new tasks quickly

Related Work

PILCO

Bayesian RL : Framework for incorporating prior knowledge into the learning process

• Limitation: Bayesian update is intractable in all but the simplest cases

 Thus, PILCO incorporates a mixture of Bayesian and domain specific ideas - reduces sample complexity

• Learns tasks in a few hours or few minutes even

 Drawback: Makes assumptions about the environment and computationally intractable in higher dimensions

Deisenroth, M. P., and C. E. Rasmussen. 'PILCO: A Model-Based and Data-Efficient Approach to Policy Search'. In *Proceedings of the 28th International Conference on Machine Learning, ICML 2011*, edited by L. Getoor And Scheffer, 465–72. Omnipress, 2011.

Reinforcement Learning

https://ml.cs.tsinghua.edu.cn/~chengyang/reading_meeting/Reading_Meeting_20220311.pdf

Meta Reinforcement Learning

https://ml.cs.tsinghua.edu.cn/~chengyang/reading_meeting/Reading_Meeting_20220311.pdf

RNN

https://disco.ethz.ch/courses/fs19/seminar/talks/meta_learning.pdf

Markov Decision Process (MDP)

 Used to model decision-making problems where the outcome of a decision depends on the current state of the system and the chosen action.

Definition

A Markov Decision Process is a tuple $\langle S, \mathcal{A}, \mathcal{P}, \mathcal{R}, \gamma \rangle$

- \mathcal{S} is a finite set of states
- \mathcal{A} is a finite set of actions
- \mathcal{P} is a state transition probability matrix,

$$\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$$

- \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$
- γ is a discount factor $\gamma \in [0, 1]$.

Example: Student MDP

Partially Observable Markov Decision Process (POMDP)

 A Partially Observable Markov Decision Process is an MDP with hidden states. It is a hidden Markov model with actions.

Definition

A *POMDP* is a tuple $\langle S, A, O, P, R, Z, \gamma \rangle$ \bullet S is a finite set of states A is a finite set of actions O is a finite set of observations \mathbf{P} is a state transition probability matrix, $\mathcal{P}_{ss'}^{a} = \mathbb{P}\left[S_{t+1} = s' \mid S_t = s, A_t = a\right]$ • \mathcal{R} is a reward function, $\mathcal{R}_s^a = \mathbb{E}[R_{t+1} \mid S_t = s, A_t = a]$ $\blacksquare \mathcal{Z}$ is an observation function. $\mathcal{Z}_{s'o}^{a} = \mathbb{P}[O_{t+1} = o \mid S_{t+1} = s', A_t = a]$ • γ is a discount factor $\gamma \in [0, 1]$.

Policy Search Methods

A policy Π is a distribution over actions given states

Definition

A policy π is a distribution over actions given states,

$$\pi(a|s) = \mathbb{P}\left[A_t = a \mid S_t = s\right]$$

- In MDP, policy depends only on current state (Markov Property)
- Policies will be time independent
- Goal of policy search method: Maximize expected discounted return

https://www.davidsilver.uk/teaching/

Methodology Formulation

- Learning RL algorithm RL problem
- Inner problem formulated as a MDP

Maximize expected total discounted reward averaged over a trial rather than an episode

Methodology Formulation

Methodology - Object Interaction Policy Representation and Optimization

Policy - Recurrent Neural Network

RNN uses GRUs

Generalized Advantage Estimation (GAE) to reduce variance in stochastic gradient estimation

Evaluation

 Can RL² learn algorithms that achieve good performance on MDP classes with special structure, relative to existing algorithms tailored to this structure that have been proposed in the literature?

• 1. Multi-armed bandits (MAB)

• 2. Tabular MDPs

Evaluation Multi-armed Bandits

https://paperswithcode.com/task/multi-armed-bandits

Evaluation Multi-armed Bandits

- Subset of MDPs, agent's environment is stateless
- Goal : maximize reward over a fixed number of time steps
- Given a slot machine with n arms (bandits) with each arm having its own probability distribution of success
- Pulling any one gives reward from Bernoulli distribution
- Receive maximum rewards in a small number of steps
- Key challenge exploring all available arms or exploiting the best arm

Results Multi-armed Bandits

Setup	Random	Gittins	TS	OTS	UCB1	ϵ -Greedy	Greedy	\mathbf{RL}^2
n=10, k=5	5.0	6.6	5.7	6.5	6.7	6.6	6.6	6.7
n = 10, k = 10	5.0	6.6	5.5	6.2	6.7	6.6	6.6	6.7
n = 10, k = 50	5.1	6.5	5.2	5.5	6.6	6.5	6.5	6.8
n = 100, k = 5	49.9	78.3	74.7	77.9	78.0	75.4	74.8	78.7
n = 100, k = 10	49.9	82.8	76.7	81.4	82.4	77.4	77.1	83.5
n = 100, k = 50	49.8	85.2	64.5	67.7	84.3	78.3	78.0	84.9
n = 500, k = 5	249.8	405.8	402.0	406.7	405.8	388.2	380.6	401.6
n = 500, k = 10	249.0	437.8	429.5	438.9	437.1	408.0	395.0	432.5
n = 500, k = 50	249.6	463.7	427.2	437.6	457.6	413.6	402.8	438.9

Results Multi-armed Bandits

Evaluation Tabular MDPs

- State and Action spaces are discrete and finite
- Transition probabilities and reward associated with each action is represented as a table
- Multi-armed bandit Whether model learns to trade-off between exploration and exploitation but no sequential decision making!

Results Tabular MDPs

Setup	Random	PSRL	OPSRL	UCRL2	BEB	ϵ -Greedy	Greedy	\mathbf{RL}^2
n = 10	100.1	138.1	144.1	146.6	150.2	132.8	134.8	156.2
n=25	250.2	408.8	425.2	424.1	427.8	377.3	368.8	445.7
n = 50	499.7	904.4	930.7	918.9	917.8	823.3	769.3	936.1
n = 75	749.9	1417.1	1449.2	1427.6	1422.6	1293.9	1172.9	1428.8
n = 100	999.4	1939.5	1973.9	1942.1	1935.1	1778.2	1578.5	1913.7

Results Tabular MDPs

Evaluation Question #2

Can RL² scale to high-dimensional tasks?

Vision based navigation task

Evaluation Vision based navigation task

Task : Navigate a randomly generated maze to find a randomly placed target

Action	Reward
Reach the target	+1
Hit the wall	-0.001
Per time step	-0.04

Allowed to interact over multiple episodes

Evaluation Vision based navigation task

Needs to learn high level actions from scratch

Results Vision based navigation task

(a) Average length of successful trajectories

(b) %Success

(c) %Improved

Episode	Small	Large	Episode	Small	Large	Small	Large
1	52.4 ± 1.3	180.1 ± 6.0	1	99.3%	97.1%	91.7%	71.4%
2	39.1 ± 0.9	151.8 ± 5.9	2	99.6%	96.7%		
3	42.6 ± 1.0	169.3 ± 6.3	3	99.7%	95.8%		
4	43.5 ± 1.1	162.3 ± 6.4	4	99.4%	95.6%		
5	43.9 ± 1.1	169.3 ± 6.5	5	99.6%	96.1%		

Results Vision based navigation task

Results Vision based navigation task

Conclusion

- Formulation : POMDP solved in outer loop where underlying MDP is unobserved by the agent
- "Fast" RL algorithm computation whose state stored in RNN activations
- "Slow" RL algorithm RNN's weights are learned by this algorithm

Comparable to theoretically optimal algorithms, scales to high dimensional tasks

Discussion

Discussion #1

How would we apply this?

• Applications of such an algorithm in real world scenarios ?

- How do we improve the current algorithm?

Discussion #2

@112_f2 - Nature of memory in humans

One thing we have not talked much about in this class is the nature of memory (with some notable exceptions). My understanding is that the human brain has structures specifically designed for short- and long-term memory, while typically in ML anything "remembered" is simply stored as fixed neural network parameters or activations when looking at a sequential input. Some models like LSTMs and GRUs attempt to address this, but suffer limitations and are often outperformed by giant transformer models. I wonder if there is still a limitation when it comes to this meta-RL in that while it may learn a good policy for learning arbitrary MDPs, the RNN structure may be inefficient when it comes to encoding good priors for other parts of the world (think "foundation models" for language, vision, etc.).

Discussion #3

• @112_f3

It was interesting to see how the authors applied their reinforcement learning method to a visual navigation problem with very sparse rewards. Previous papers we read that explore this problem rely on intrinsic curiosity-promoting rewards to encourage exploration and learning, while this method relies on memory (in the form of learned weights) from previous trials to improve subsequent runs in the maze. The paper points out that for the second episodes, the trajectory lengths significantly decreased because the models learned to use information from the previous episode. But I noticed that in subsequent episodes (3+) the performance seems to be worse. Does anyone know why this is the case? Or maybe I am misunderstanding how the episodes are set up?

Thank You!