The iCub Humanoid Robot: An open-systems platform for research in cognitive development

Giorgio Metta, Lorenzo Natale, Francesco Nori, Giulio Sandini, David Vernona, Luciano Fadiga, Claes von Hofsten, Kerstin Rosander, Manuel Lopes, José Santos-Victor, Alexandre Bernardino, Luis Montesano

Presented by: Ben Steinig

Overview

- 1. Introduction
- 2. Design Goals
- 3. Foundations of Human Development
- 4. Specific Results
- 5. Discussion

Introduction

- → designed to support research in the field of cognitive development through autonomous exploration and social interaction.
- → offers rich perceptuo-motor capabilities with many degrees of freedom, a cognitive capacity for learning and development
- → an open systems policy for software/hardware development can have a significantly greater impact on the research.

iCub promises to deliver on all of these, and is freely available as an open source platform.

Introduction



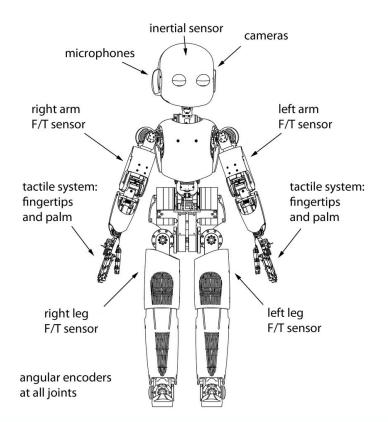
Introduction - Inspiration from Nature

Efficiency - highly task-specific

 automatic systems that are very fast and precise in their operations

Versatility - biological compatibility development

- A biological-like system
 - which takes decisions and acts in the environment
 - adapts and learns how to behave in new situations
 - invents new solutions on the basis of the past experience


Introduction - Humanoid Interaction

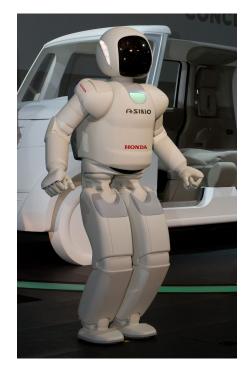
- Why mimic biological systems?
 - Learns to interact
 - An interaction is expected to be made up of acting, categorizing, and understanding the environment that it is in.
 - Exhibits exploratory behavior
 - attempts and errors are essential during knowledge acquisition because they increase the field of exploration.

Design Goals

- Cognitive systems could not progress without the following prerequisites:
 - the development of a sound formal understanding of cognition
 - the study of natural cognition and the development of cognition
 - the study of action in humans using neuroscience methods
 - the physical instantiation of these models in a humanoid robot

Design Goals - What Architecture Design?

- The iCub was not designed to contain preprogrammed cognitive skills, but to implement a system that mimics a human infant
- The iCub is able to grasp unknown objects, assemble simple objects with plugs
- Coordinate the use of two hands
 - These skills require visual-haptic object recognition, imitation, and understanding of one and two-hand gestures


Design Goals - How to Understand Human Development

- Due to the interrelated nature of action, perception, and cognition, they cannot be independently studied on iCub.
- Instead certain experimental scenarios capture facets of these developments.
 - learning to control one's upper and lower body (crawling, bending the torso) to reach for targets
 - learning to reach static and moving targets
 - learning to balance in order to perform stable object manipulations when crawling or sitting.
- The above experiments are far from being completed, but with iCub, the authors believe they have created a basis for solid development in the direction of a biological system.

Design Goals - Physical System

- iCub was designed to maximize degrees of freedom and thus allow for flexible exploration and manipulation of the environment
 - **The lower body (legs) can sit, squat, and crawl,** but they also support bi-pedal walking (not yet implemented when this paper was published)
 - The upper body has 41 DOFs (7 for each arm, 9 for each hand, 6 for the head, 3 for the torso and spine)
 - The sensory system includes binocular vision, touch, binaural audition, and inertial sensors.
 - Functionally speaking, iCub can coordinate movement of the eyes and hands to manipulate lightweight objects, crawl on four legs, and sit stably.

-

Foundations of Human Development

The goal of the iCub team in studying the development of early cognition in humans is to model the relevant aspects of such a process in the iCub robot. This research is strongly driven by studies of developmental psychology and cognitive neuroscience.

Human Development - Studies

- The primary processes that were studied by the iCub team include:
 - the time frame of a developmental process that begins to guide action by internal representations of upcoming events
 - \circ $\$ by the knowledge of the rules and regularities of the world
 - by the ability to separate means and end (or cause and effect)

Human Development - iCub approach to cognition

- The next important question is understanding what principles govern the ontogenetic development of biological organisms
 - Developmental psychology and neuroscience tell us that behavior in biological organisms is organized in primitives called actions (not to be confused with movements or reactions)
 - Actions are behaviors initiated by a motivated subject, defined by goals, and guided using prospective information (prediction)
 - Elementary behaviors therefore are not reflexes but actions with goals, where perception and movement are integrated, and are initiated by motivation and guided by prediction.

Human Development - What is relevant?

- What is innate, where do we start from?
- What drives development?
- How is new knowledge incorporated, what are the forces that drive development?

Human Development - What is innate?

- Prestructuring
 - Muscular synergies to lower degrees of freedom
- Core Abilities
 - Abilities to describe perception of objects, geometric relationships, and understanding of people (Spelke 2000)

Human Development - What drives development?

- Newborn motivations are both social and explorative
 - Social motivations allow newborns to learn through social interaction

Human Development - How is new knowledge incorporated?

- The brain
 - Has mapping and formation dynamics baked in
 - Dynamically changes based on interactions with the environment

- The environment
 - Factors in the environment affect how the individual develops

Human Development - Canonical & Mirror Neurons

Canonical

Mirror

- Active when:
 - Grasping an object
 - Fixating the same object
- Can be thought of as a Gibson Affordance

- Active when:
 - When manipulating an object
 - When watching someone else perform the same action on the same object
- Explains mimicry behaviors in humans

Human Development - Sensorimotor Loops

- Required for studying the human motor system
 - Play an essential role in recognition, planning, and understanding intentions (and language)
- Motor resonance phenomenon
 - Indicates that the motor system can actually be activated by passive observation of actions
- TMS pulses vs. H-reflex experiment
 - TMS pulses: evoke motor potentials through magnetic stimulation
 - H-reflex: electrically induced spinal stretch

Specific Results

- 1. Mechatronics of the iCub
- 2. Software Architecture
- 3. Sensorimotor coordination models
- 4. Object Affordances
- 5. Imitation and Communication

Specific Results - Mechatronics of iCub


- iCub is a humanoid robot 1 meter tall and weighing 22 kilograms
- It has 53 degrees of freedom, allowing it to crawl and fully explore its environment
- Has a camera for each eye that provides images at a resolution of 640 x 480 pixels

Specific Results - Software Architecture

- YARP (Yet Another Robot Platform): is the software package that drives iCub.
 - Allows for interconnecting sensors, processors, and actuators in the robot
- iCub uses YARP to define input and output ports for its control
 - This system is designed to be modular and easily extensible

yet another robot platform

Sensorimotor Coordination Models

- iCub depends on the development of sensorimotor coordination and mapping
 - Need to identify the sensory information required for motivated actions
- Two primary research themes
 - 1. Model how sensorimotor systems evolve from independent mechanisms
 - 2. Model the role of motor representation as a tool of both action and perception

fMRI Mirror System Experiment

- Functional brain studies showed that the mirror system is more activated when subjects observe a familiar action or sound than an unfamiliar observation
- fMRI experiment looked at whether an efficient mirror system develops in people without any visual experience
 - Found that the system can develop in the absence of sight using other sensory modalities
 - And the results showed that sound can engage the mirror system for actions that have never been learned visually

Human-Infant Gaze Experiment

- Answers whether other people's actions can be understood by projecting them onto one's own action system
- Experiment measured gaze and hand movements of adults and infants
 - Subjects either performed an action or watched the same action being performed
- Findings:
 - For the movement, adults and infants had incredibly similar performance
 - In the observation, infants were more delayed than the adults

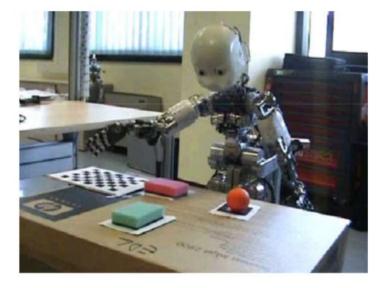
Object Affordances

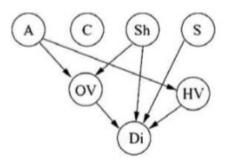
- In this paper, affordances are used by Gibson's definition
 - All action possibilities on a certain object, based on the actor's capabilities
 - Whether or not to exploit an affordance is based on goals, values, and interests
- iCub can learn affordances of objects
 - iCub team conducted research on exploratory behaviors and what relevant information is needed

Acquisition of Affordances

- Humans learn affordances throughout their lives
- There are two primary paths to acquiring new affordances:
 - Self-exploration (autonomous learning)
 - Observation (learning from examples)
- Learning by observation requires some base capabilities which are initially acquired by self-exploration

Bayesian Networks


- iCub learns affordances using Bayesian Networks
 - BN's are sets of nodes that describe random variables, sets of directed edges encoding conditional probabilities, and a set of conditional probability distributions


Fig. 3. (a) General affordance scheme relating actions, objects (through their characteristics) and the resulting effects. (b) A particular BN encoding affordances.

Bayesian Networks

A: Action C: Object Color Sh: Object Shape S: Object Size OV: Object Velocity Profile HV: Hand Velocity Profile Di: Hand Object Distance Profile

Fig. 5. Learned network. The variables represent *A* action, *C* object colour, *Sh* object shape, *S* object size, *OV* object velocity profile, *HV* hand velocity profile, *Di* hand object distance profile.

Bayesian Networks

https://youtu.be/i8GXuYe2dfY

Conclusion

- iCub is a cognitive humanoid robot pushing the boundaries of research in developmental robotics
- Designed based on a road map of human development, which stressed the role of prediction for skilled movement
- Incorporates a model of sensorimotor control and development to consider actions

Discussion #1 - @74_f4

"Particularly, human babies evolve and become more mobile as they grow. Their cognitive development is a result of them exploring their environment. The concept of objecthood in social environments is attained through exploratory behavior and iCub focuses on this principle as well. A high variability in the environment also serves to improve cognition and exploration skills due to increase in curiosity."

- How is movement important for the development of human cognition?
- What other factors can be used to motivate curiosity and exploration in a limited environment?

Discussion #2 - @74_f6

- What methods besides Bayesian Networks can be used to model affordances?

https://youtu.be/ghUFweqm7W8

