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 Exploratory activities seem to be intrinsically 
rewarding for children and crucial for their 
cognitive development. Can machine be 
endowed with such an intrinsic 
motivation system?

Inspirations from human infant development:

● Development is progressive and 
incremental.

○ Challenge for robots: develop in an 
open-ended manner.

● Development is autonomous and active.

○ An intrinsic motivation system providing 
internal rewards during play experiences.
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Intrinsic motivation systems

Existing computational approaches typically have the following two modules:

● A learning machine M:
○ Learns to predict the sensorimotor consequences when an action is executed in a sensorimotor 

context.

● A meta-learning machine metaM:
○ Learns to predict the errors in M’s predictions.

○ The meta-predictions are basis for evaluating the potential interestingness of a situation.

The robot’s actions are actively chosen according to some internal measures 
related to the novelty or predictability of the anticipated situation.



Existing intrinsic motivation systems

Modules:

● M: learns to predict the sensorimotor 
consequences of actions.

● metaM: learns to predict the errors in M’s 
predictions.

The robot’s actions are actively chosen according 
to some internal measures related to the novelty 
or predictability of the anticipated situation.

Action-selection can be made depending on the 
predictions of M and metaM in order to:

● Maximize the prediction error of M. 
(Group 1)

● Maximize the decrease of M’s mean error 
rate.

○ Compare the error rates in the close past. 
(Group 2)

○ Compare the error rates in situations 
which are similar, but not necessarily close 
in time. (Group 3)

The decrease of M’s mean error rate can be 
monitored by a third module KGA (knowledge 
gain assessor).



Existing intrinsic motivation systems

Group 1: Error maximization

● Choose at each step the action that metaM predicts the 
largest error in M’s prediction.

Group 2: Progress maximization

● KGA evaluates the decrease of M’s mean error rate in 
situations that are close in time.

● Choose the action that will lead to the greatest decrease 
of M’s mean error rate.

Group 3: Similarity-based progress maximization

● Builds a measure of similarity of situations
○ and ultimately an organization of the infinite 

continuous space of particular situations into higher 
level categories of situations.

● KGA evaluates the decrease of mean error rate in 
situations that are similar. The architecture used in various models of Group 2 (progress maximization) and 

Group 3 (similarity-based progress maximization).



Intelligent Adaptive Curiosity 
(IAC)

IAC is a drive to keep the learning progress 
maximal. It is an intrinsic motivation.

As a side effect, it pushes the robot toward novel 
situations in which things can be learned (curiosity),

and keeps the robot away from situations that are too 
predictable or too unpredictable (intelligent).

The situations that are attractive changes over time. 
Once something is learned, it will not provide learning 
progress anymore (adaptive).
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maximal. It is an intrinsic motivation.

As a side effect, it pushes the robot toward novel 
situations in which things can be learned (curiosity),

and keeps the robot away from situations that are too 
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progress anymore (adaptive).

Implementation

● A memory which stores all the experiences 
encountered by the robot in the form of vector 
exemplars.

● The sensorimotor space is incrementally split into 
regions. Each region is characterized by an exclusive 
set of exemplars.

● Each region is associated with an expert (learning 
machine) making predictions for situations in the 
region.

● The prediction errors (associated with the region) are 
used for evaluation of the potential learning 
progress that can be gained by going in to situations 
in the region.

● In a situation, the robot selects the action that leads to 
a new situation with maximal expected learning 
progress.



IAC: Sensorimotor apparatus, regions and experts

Sensorimotor apparatus:

● S(t) - sensors
● M(t) - action/motor parameters
● SM(t) - sensorimotor context, 

concatenation of S(t) and M(t)

IAC equips the robot with a memory of all 
exemplars (SM(t), S(t + 1)) it has encountered.

The sensorimotor space is incrementally splitted 
into regions. Each region has an exclusive set 
of exemplars.
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● M(t) - action/motor parameters
● SM(t) - sensorimotor context, 

concatenation of S(t) and M(t)

IAC equips the robot with a memory of all 
exemplars (SM(t), S(t + 1)) it has encountered.

The sensorimotor space is incrementally splitted 
into regions. Each region has an exclusive set 
of exemplars.

Method: recursively for each region, split the region 
into two when criterion C1 is met, by separating the 
sensorimotor space with criterion C2.

● When to split a region into two? (criterion C1)

○ The number of exemplars exceeds T = 250.

● How to make the split? (criterion C2)

○ Separate the sensorimotor space according to 
feature j in SM(t) and the cutting value vj.

○ The cutting dimension j and value vj are 
chosen such that the resulting two splits have 
the smallest sum of variances for S(t + 1).
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Method: recursively for each region, split the region 
into two when criterion C1 is met, by separating the 
sensorimotor space with criterion C2.

● When to split a region into two? (criterion C1)

○ The number of exemplars exceeds T = 250.

● How to make the split? (criterion C2)

○ Separate the sensorimotor space according to 
feature j in SM(t) and the cutting value vj.

○ The cutting dimension j and value vj are 
chosen such that the resulting two splits have 
the smallest sum of variances for S(t + 1).Example of how the sensorimotor space is split into subspaces, called “regions”.



IAC: Evaluation of learning progress

Each region Rn is responsible for monitoring the 
evolution of error rate in the anticipations of the 
consequences of an action when the associated context 
SM(t) is covered by the region.

● The error rate en(t + 1) is the squared error of 
expert En’s prediction for the sensory state S(t + 
1).

● Past error rates en(t), en(t - 1), …, en(0) are stored 
with Rn.

● The learning progress that has been achieved 
through the transition from SM(t) to the context 
with a perceptual vector S(t + 1) is computed as 
the smoothed derivative of the error curve 
of En corresponding to the recent exemplars. 

Mean error rates:

Decrease in mean error rate:

D(t + 1) = <en(t + 1)> - <en(t + 1 - τ)>

Learning progress:

L(t + 1) = -D(t + 1)



IAC: Action selection

● Each time an action is performed in a context, the 
internal reward depends on how much learning 
progress has been achieved: r(t) = L(t).

● The intrinsically motivated robot aims to 
maximize the internal reward, which is 
formulated as maximization of the return 
(future expected rewards).

● The problem is simplified to only maximize the 
expected reward at t + 1, evaluated by the learning 
progress achieved in Rn the last time Rn and En 
processed a new exemplar: E{r(t + 1)} ≈ L(t - θRn).

○ The paper focuses on the study of the learning 
progress. Using a complex reinforcement 
machinery brings complexity and biases.

Learning progress:

L(t + 1) = -D(t + 1)

D(t + 1) = <en(t + 1)> - <en(t + 1 - τ)>



Experiment with a simple simulated robot

● The robot’s movement and sound can be controlled by setting 
the speed of the left motor (l), speed of the right motor (r), 
and frequency of the sound (f).

○ Motor vector M(t) = (l, r, f)

● A toy moves according to the sound:
○ f1 = [0; 0.33], moves randomly

○ f2 = [0.34; 0.66], stops moving

○ f3 = [0.67; 1], jumps into the robot

● The robot perceives distance between the toy and itself with 
infrared sensors.

○ Sensory vector S(t) = (d)

● It tries to learn the mapping

● The intrinsically motivated robot will act to maximize its 
learning progress in terms of predicting the next toy distance.

A robotic simulation implemented by Webots. A two-wheeled robot 
moves in a room and emits a sound. An intelligent toy (represented 
by a sphere) moves according to the sound the robot produces.

How does the IAC system work in a 
continuous sensorimotor environment 
with inhomogeneous parts?

● unlearnable part
● easy to learn part
● complex and learnable part



Simulated robot

Motor control, perception, and action 
perception loop:

● The robot moves in a room and emits a 
sound: M(t) = (l, r, f).

● The toy moves randomly when the sound 
is in the zone f1, stops moving if the sound 
is in f2, and jumps into the robot if the 
sound is in f3.

● The robot perceives the distance between 
the toy and itself: S(t) = (d).

● The robot tries to learn the mapping:

The sensorimotor space has three zones with 
different complexities (initially unknown to 
the robot):

● f1 - unlearnable.

● f2 - predictable and learnable, complex and 
dependent on the wheel speeds.

● f3 - easy to learn and predict, the distance 
is always zero plus a noise.

The results will show the robot manages to 
autonomously discover the three zones, evaluate 
their complexity, and exploit this information to 
organize its behavior.



Results

From an external point of view, there are three zones 
in the sensorimotor space: f1 ([0, 0.33], unlearnable), f2 
([0.34, 0.66], complex and learnable), and f3 ([0.67, 1], 
predictable).

The percentage of time the robot spent in f1, f2 and f3 
evolves over time.

● Stage 1: Initially the robot produces sounds 
with frequencies in [0, 1] uniformly.

● Stage 2: The robot concentrates on f3.

● Stage 3: The robot concentrates on f2.

The robot consistently avoids the situations where 
nothing can be learned, begins by easy situations, and 
then shifts to a more complex situation.Percentage of time the robot spent in the zones f1, f2, and f3, measured for 5,000 time steps.



From the robot’s point of view, the mean error rates in each 
region evolve over time.

● The first split occurred after the first 250 time steps.

○ R1 is split into R2 and R3 using the feature f2 and the 
cutting value 0.35. R2: f3 and part of f2; R3: f1 and part of f2.

● In R2 the error rate has a sharp decrease, while in R3 it has 
a sharp increase.

○ During this period, the robot concentrates on emitting 
sounds in f3.

● The error rate in R2 plateaued at some point.

○ The robot switched from emitting sounds in f3 to emitting 
sounds in f2.

● The robot learns to predict the consequences of varying 
the speeds, in addition to the sound frequency.

○ R4 corresponds to f2 and R5 corresponds to f3.
○ R4 is split into more regions using the speed dimensions.

Evolution of mean error rates for all regions over time.

Results



The Playground Experiment

http://www.youtube.com/watch?v=tbEYnTzMDgs


The Playground Experiment

● The robot is equipped with three basic motor primitives:
○ turning head - controlled by pan (p) and tilt (t) of the head.
○ bashing - controlled by strength (bs) and angle (ba) of the leg 

movement.
○ crouch biting - controlled by depth (d) of the crouching.
○ Motor vector M(t) = (p, t, bs, ba, d)

● It has an object visual detection sensor, a biting sensor, 
and an oscillation sensor, that take binary values Ov, Bi, 
Os respectively.

○ Sensory vector S(t) = (Ov, Bi, Os)

● It tries to learn the mapping:
A Sony AIBO robot put on a play mat with toys that can 
be bitten, bashed, or visually detected. The environment 
is similar to the ones in which two- or three-month old 
children learn their first sensorimotor skills.



The Playground Experiment

Sensorimotor affordances (initially unknown to the 
robot):

● The values of object visual detection sensor (Ov) is 
correlated with the values of pan and tilt.

● The values of the biting or oscillation sensors (Bi 
and Os) can become 1 only when biting or bashing 
actions are performed toward an object.

● Some objects are more prone to provoke changes 
in Bi and Os with certain kinds of actions.

● To get a change in Os, bashing in the correct 
direction is not enough, and it also needs to look 
in the right direction.

A Sony AIBO robot put on a play mat with toys that can be bitten, 
bashed, or visually detected. The environment is similar to the 
ones in which two- or three-month old children learn their first 
sensorimotor skills.



Results

Top 3: Percentage of actions that

1) involves biting
2) involves bashing
3) is just looking

Mid 3: Gaze of the robot. Percentage of actions that is 
looking towards

1) no object
2) the bitable object (“object 1”)
3) the bashable object (“object 2”)

Bottom 2: Percentage of

1) successful biting actions (provoke a “1” value on 
the biting sensor)

2) successful bashing actions (provoke a “1” value on 
the oscillation sensor)

Evolution of the percentage of several kinds of actions over time. The horizontal 
axis represents time and three vertical axes representing the percentage are 
stacked. Object 1: bitable. Object 2: bashable.



Results

A peak means that at the moment the robot focuses its activity and 
attention on a small subset of the sensorimotor space.

Observations:

● Before the first peak, successful bite or bash and seeing 
any object are rare, and all actions are produced equally 
often.

● Peak (A): the robot focuses on moving its head around and 
stops biting and bashing.

○ Several regions have been created. The region that 
corresponds to the sensorimotor loop of “just looking” has 
the highest source of learning progress.

● Peak (B): a focus on biting, that doesn’t co-occur with 
looking towards the bitable object.

● Peak (E): a focus on biting, coupled with a peak of looking 
towards the bitable object, and a peak of successful biting.

○ The robot uses the action primitive with the right 
affordances.

Evolution of the percentage of several kinds of actions over time. The horizontal 
axis represents time and three vertical axes representing the percentage are 
stacked. Object 1: bitable. Object 2: bashable.

biting
looking

biting

seeing 1



Summary

● An intrinsic motivation system IAC that drives the development of a robot in 
continuous noisy inhomogeneous spaces.

● Experiments:
○ Simulated robotic setup: how IAC works and provokes behavioral and cognitive development.
○ Physical robotic setup: IAC allows the robot to autonomously generate a developmental 

sequence.

● Limits of the system:
○ Simplification to optimize only the immediate reward.
○ Rather simple sensorimotor space.



Questions from Piazza discussion

Can the intrinsic reward in the IAC system help improve reinforcement learning methods? 
Does it combines well with goal-directed objective function? @45_f3

For models that perform best when learned in a task-aware manner, how to balance the 
intrinsic reward and the extrinsic reward? @45_f8



Thank you



Discussion summary



1. Intuition behind the modules in intrinsic motivation systems

As illustrated in Fig. 1 in the paper, intrinsic motivation systems typically comprise a learning machine, a 
meta-learning machine, and optionally a knowledge gain assessor.

How do babies learn to crawl, walk, or run? Rather than extrinsic reward like how far they have walked 
without falling, their motivations are to keep the play and exploration going. To develop an intelligent 
robot capable of a variety of skills, it needs to know when to learn each skill. This motivates the second 
module, the meta-learning machine. The robot can make predictions to decide if it has mastered a skill and 
needs to move on to something novel.

Novelty by itself is not enough since it can result in exploring novel situations without making progress. 
Like in infant development some skills can only be learned when the associated cognitive and 
morphological structures are ready. This motives the third module, knowledge gain assessor. When the 
robot encounters situations where it cannot gain knowledge, it goes for other options.

(Source: In-class discussion, Piazza @45_f7)



2. Measuring similarity

There are many ways to capture the knowledge gain intuition. The paper chooses similarity-based progress 
maximization. For example, walking is more similar to crawling, than running is to crawling. And babies can 
base on the skills they have already learned and extend a little bit to make progress. How to measure this 
similarity?

Computationally, we can try to group situations based on what the goal is, like moving forward (walking and 
crawling) or moving forward quickly (running). We can also consider other aspects, like the center of gravity, 
perception of depth, and other sensory signals.

(Source: In-class discussion)



3. Intrinsic reward in reinforcement learning

Designing an appropriate reward function is a hard part of reinforcement learning. Recent research has been 
incorporating “curiosity” into RL systems, e.g. 1) Curiosity-Driven Exploration by Self-Supervised Prediction 
2) Exploration by Random Network Distillation 3) Learning Latent Dynamics for Planning from Pixels. The 
idea is to use reinforcement learning to guide information gathering for neural networks, whose results are 
provided to the reinforcement learning agent as reward.

(Source: In-class discussion, Piazza @45_f3 @45_f8 @45_f10)

https://arxiv.org/abs/1705.05363
https://arxiv.org/abs/1810.12894
https://arxiv.org/abs/1811.04551


4. Evaluating behavior complexity

Using a simple reward maximizing learning progress, the system in the paper developed a steady emergence 
of more complex behaviors. Despite that evaluating complexity objectively can be difficult, the paper 
illustrated in their experiments task-independent evaluation methods for the evolution of the system’s 
complexity, such as identifying stages in developmental sequences, and measuring the internal variables of the 
robot.

(Source: Piazza @45_f2) 



5. Modeling the sensorimotor space

The sensory space and the motor space are not treated separately, reflecting the theories in previous readings 
that perception and motor functions to a certain degree are tied together. Mathematically, the sensory and 
motor vector are concatenated as the sensorimotor context. As a result, the system can develop regions 
according to both features.

(Source: Piazza @45_f12) 



6. Limitations of imitation learning

Imitation learning in robotic settings is about trying to copy the motor from the teacher, and it only works if 
the robot has the same morphology as the teacher. One example is designing airplanes. Mimicking the living 
things that can fly would lead to flapping wings. Without a developmental body but with a fixed morphology, 
we need to consider the computational principle behind it.

It can be helpful to characterize the sensory information. Like when driving in a rental car, knowing how the 
actions will lead to changes in your sensory systems can help you transfer driving skills to this new 
environment.

(Source: In-class discussion) 


