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Semantic navigation is necessary to deploy mobile robots in uncontrolled en-
vironments like our homes, schools, and hospitals. Many learning-based ap-
proaches have been proposed in response to the lack of semantic understand-
ing of the classical pipeline for spatial navigation, which builds a geometric
map using depth sensors and plans to reach point goals. Broadly, end-to-end
learning approaches reactively map sensor inputs to actions with deep neu-
ral networks, while modular learning approaches enrich the classical pipeline
with learning-based semantic sensing and exploration. But learned visual nav-
igation policies have predominantly been evaluated in simulation. How well
do different classes of methods work on a robot? We present a large-scale em-
pirical study of semantic visual navigation methods comparing representative
methods from classical, modular, and end-to-end learning approaches across
six homes with no prior experience, maps, or instrumentation. We find that
modular learning works well in the real world, attaining a 90% success rate.
In contrast, end-to-end learning does not, dropping from 77% simulation to
23% real-world success rate due to a large image domain gap between simula-
tion and reality. For practitioners, we show that modular learning is a reliable
approach to navigate to objects: modularity and abstraction in policy design
enable Sim-to-Real transfer. For researchers, we identify two key issues that
prevent today’s simulators from being reliable evaluation benchmarks — (A)
a large Sim-to-Real gap in images and (B) a disconnect between simulation
and real-world error modes — and propose concrete steps forward.
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Fig. 1. Deployment of the semantic navigation policies in six visually diverse homes.



1 Introduction
Humans can navigate in unseen environments effortlessly. We can utilize our experience in
prior environments to explore any new environment and find any target object efficiently. For
example, when looking for a glass of water at a friend’s house we’re visiting for the first time,
we can easily find the kitchen without going to bedrooms or storage closets. Learning such
semantic priors is essential to deploy autonomous mobile robots in uncontrolled environments
like our homes, schools, and hospitals. In this work, we tackle the Object Goal navigation [1]
task where a robot is asked to find an object belonging to a particular category, like a bed or a
couch, in a completely unseen environment.

Navigation has been studied in robotics literature for over three decades [2, 3, 4, 5, 6, 7,
8, 9, 10, 11, 12, 13]. Many classical approaches to navigation require access to pre-computed
maps [7, 10, 11]. Among approaches that can operate in unseen environments, classical ap-
proaches typically build a geometric map of the environment using depth sensors [12, 13, 14],
and later a monocular RGB camera [15, 16, 17], while simultaneously localizing the robot rel-
ative to its growing map. Building on this simultaneous localization and mapping (SLAM)
module, classical methods explore with heuristics such as frontier-based exploration [18] and
leverage an analytical planner for low-level control to avoid obstacles and reach exploration or
point goals. Adapting these methods to navigate to objects requires detecting objects, keep-
ing objects in memory, and exploring semantically towards objects. Semantic SLAM meth-
ods [19, 20, 21, 22, 23, 24, 25] naturally extend SLAM to detect objects and keep them in
memory but offer no solution for efficient semantic exploration.

Following recent advances in machine learning and computer vision, there has been a lot
of interest in designing learning-based policies for visual navigation capable of learning these
semantic priors. The most common learning-based methods for semantic navigation use a deep
neural network, usually consisting of a visual encoder followed by a recurrent layer for mem-
ory, to predict actions directly from raw observations. These end-to-end learning approaches
are trained using backpropagation with imitation learning (IL) or reinforcement learning (RL)
losses. Inspired by seminal proofs of concept in autonomous driving [26, 27] and early suc-
cesses of pixel-to-action deep reinforcement learning [28, 29], early applications of end-to-end
learning to semantic navigation include [30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]. Most rele-
vant to us, [41, 42, 43] propose end-to-end policies to navigate to object goals. End-to-end RL
methods have been scaled to train with billions of frames corresponding to 80 years of naviga-
tion time (in sim) using distributed training [44] or tens of thousands of procedurally generated
scenes [45]. While end-to-end policies often directly map sensor data to actions, akin to a mod-
ern version of Rodney Brook’s Subsumption architecture [46], researchers have also introduced
some structure into the neural network, such as intermediate spatial [47, 48, 49, 50, 51] and
topological representations [52, 53, 54].

Classical and end-to-end learning-based approaches offer distinct advantages. End-to-end
learning policies can learn semantic priors for goal-directed exploration, while the modular-
ity of the classical pipeline offers easier engineering and interpretability [55]. Following suc-
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cessful applications across robotics in autonomous driving [55, 56], flight [57], and grasp-
ing [58, 59, 60], much work has focused on designing modular learning approaches that aim
to combine the benefits of both learning and classical methods. Modular learning approaches
preserve the structure of the classical pipeline and replace analytical modules for specific sub-
tasks with learned ones. In semantic navigation, the subtask decomposition typically includes
separate modules for perception (object detection, mapping, pose estimation, SLAM), encod-
ing goals, global waypoint selection policies, planning, and local obstacle avoidance policies.
Learned modules are trained using direct supervision, which offers better sample efficiency than
end-to-end learning [55]. Modular learning can enable Sim-to-Real transfer [56, 61, 62]: one
can shield learned modules from Sim-to-Real domain gaps by designing abstractions of the in-
put raw sensor data that contain sufficient information to solve the task while being invariant
to environmental factors that are hard to simulate accurately (like photo-realistic RGB images)
and thus unlikely to transfer from sim to reality. Representative examples of modular learning
for exploration [61, 63] and for reaching object goals and image goals are [62, 64, 65, 66]. Most
relevant to us, [62] cleanly isolates the problem of learning a policy to explore semantically to-
wards objects from the rest of the navigation problem. Modular learning methods have also been
applied to longer-horizon tasks such as following language navigation instructions [67, 68], ex-
ecuting language instructions interactively in ALFRED [69, 70, 71], object rearrangement in
AI2 Thor [72, 73] and improving perception using active exploration [74, 75].

Over the past few years, the semantic navigation community has proposed hundreds of
methods and organized tens of benchmarks in sim [76]. If the field doesn’t lack proposed meth-
ods, what is missing to enable robots to navigate semantically? In our view, the missing piece
of the puzzle is large-scale real-world evaluation. Learned navigation policies have predomi-
nantly been evaluated in sim [77]. We can attribute this to (A) the emergence of sophisticated
embodied simulators [78, 79, 35], which significantly reduced the field’s barrier to entry and
sped up the proposal of new methods, and (B) the relative operational difficulties of bringing
a robot out of the lab into diverse, realistic, deployment environments. But while simulators
can be very useful for training, they are insufficient for evaluation. In the end, how well a
method performs on a robot is the only thing that matters, and we have only partial answers,
if any, as to whether sim is a good evaluation benchmark for semantic navigation. Does sim
performance reflect real-world performance? Do design choices that improve sim performance
improve real-world performance? Do sim error modes reflect real-world error modes? Most
prior Sim-to-Real studies in navigation focused on spatial (point goal) navigation and legged
locomotion [80, 81, 82, 83, 84], as opposed to semantic navigation. The few other real-world
semantic navigation works directly train on real-world images for outdoor visual goals [85, 86]
and language instruction following [87]. A lack of real-world evaluation opens semantic navi-
gation to the risk of sim-only research that does not generalize to the real world [88].

Our proposed work addresses this issue through a large-scale empirical evaluation of seman-
tic navigation policies. We compare representative methods from classical, modular learning,
and end-to-end learning approaches across six visually diverse real home environments, as il-
lustrated in Fig. 1. This represents 45 hours of robot experiments (3 methods x 6 homes x 10
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episodes per home x 15 minutes per episode). In addition, we replicate one home in sim to
ensure our experimental setting matches that of sim benchmarks and decompose the Sim-to-
Real performance gap. We find that modular learning transfers to the real world very well, with
performance rising from a 81% success rate in sim to 90% in the real world (within a limited
time budget). In contrast, end-to-end learning performance drops sharply from 77% sim to 23%
real-world success rate due to a large image domain gap between sim and reality. Classical
approaches fall in between, with an 80% real-world success rate.

The takeaway for practitioners looking to build robots that navigate to objects is that the
modular learning pipeline is very reliable, with a 90% success rate in limited time and efficient
object search. In addition, we show that the remaining errors are primarily due to depth sensor
failures (mapping failures and reflections in mirrors and TVs), which offers a clear path towards
even greater reliability through better sensing or methods better able to deal with depth noise.

The takeaway for researchers is that much work remains to close the Sim-to-Real gap for
semantic navigation. We identify two key issues that prevent today’s simulators, 3D assets, and
task definitions from being reliable evaluation benchmarks. Then we propose concrete steps
along two orthogonal paths forward: improve sim to better reflect real-world conditions and
improve practices to work with imperfect sim.

First and foremost, there is a large Sim-to-Real gap in RGB images between sim and reality.
Because of this, design choices easily overfit to sim. Two representative examples are that (A)
policy architectures that directly operate on RGB images don’t transfer because they overfit to
sim images, and (B) the common practice of training segmentation models on sim data improves
performance in sim but hurts in the real world. Improving sim to close this gap would involve
increasing RGB photo-realism or providing extensive plug-and-play RGB randomization, both
hard open problems [88]. This leaves us with no choice but to improve practices to work with
today’s sim. We should prioritize real-world transfer when designing policies: (A) replace
policy architectures that directly operate on RGB images with ones leveraging abstractions as is
common practice in other domains [56, 59, 89], and (B) avoid training a segmentation model on
sim data if the policy architecture does not allow easily swapping it for one trained on real-world
data at inference time.

Second, sim error modes don’t accurately reflect real-world error modes, which limits the
usefulness of sim to diagnose bottlenecks and further improve methods. Modular learning errors
in the real world largely stem from depth sensor errors, while sim benchmarks usually assume
perfect depth or don’t provide realistic depth noise models. In contrast, errors in sim largely
stem from reconstruction errors that do not happen in reality — both visual (imperfect RGB
reconstruction that makes semantic segmentation harder in sim than reality) and physical (noisy
navigation meshes that make planning harder in sim than reality). This explains the increase in
performance from sim to reality for modular learning and stresses the need to always evaluate
semantic navigation policies on real robots. We propose concrete steps forward to close this gap:
(A) introduce realistic depth noise models for target deployment robots in sim benchmarks, (B)
improve the visual quality of sim 3D scans, (C) improve the quality of sim navigation meshes.
We hope our analysis sparks work to close the Sim-to-Real gap for semantic navigation.
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Fig. 2. Three approaches to navigate to objects. (A) The modular learning approach builds a top-
down semantic map, selects a semantic exploration goal in this space, and plans low-level actions to
reach this goal. (B) The classical approach also builds a semantic map but selects the closest unexplored
region as the exploration goal, independently of the goal object. (C) The end-to-end learning approach
directly maps sensor inputs and the goal object to low-level actions with a deep neural network.

One-Sentence Summary: Real-world empirical study of robot navigation methods com-
paring classical, end-to-end and modular learning approaches.

2 Results
Movie 1 summarizes our results. We have deployed a policy representative of each of the
classical, end-to-end learning, and modular learning approaches to Object Goal navigation on a
Hello Robot Stretch robot [90]. Stretch is a lightweight, compact, low-cost mobile manipulator
with an RGB-D camera and LiDAR, which we use only for localization and collision avoidance.
We evaluated the policies at scale over 60 episodes split across six goal object categories in six
different homes and a controlled study with one home replicated in sim. Before presenting
our results, we give minimal formal background on the Object Goal task and the methods we
evaluate.

2.1 Navigating to Objects: Task and Approaches
We consider the problem of semantic navigation instantiated by the Object Goal task [62, 1, 91].
In the Object Goal task, the robot’s objective is to navigate to an instance of a particular object
category (in our case, “chair”, “couch”, “potted plant”, “toilet”, “tv”, or “bed”) as efficiently
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as possible. The robot starts at a random location in an unknown home and receives the goal
object category. At each step, the robot observes first-person RGB and depth images and takes
a discrete navigation action: move forward (25 cm), turn left or right (30 degrees), or stop. The
robot needs to take the stop action when it believes it has reached the goal object. An episode
is considered successful if the robot’s distance to an instance of the goal object category is less
than some threshold (1 meter) when the robot takes the stop action. In contrast, an episode
is a failure if the agent calls the stop action too far from the goal object, never calls the stop
action before a fixed maximum number of timesteps (500), or collides too many times (more
than 20) with its environment. We use two metrics for comparing methods: Success Rate (SR),
the ratio of successful episodes, and Success weighted by Path Length (SPL) [1], the ratio
of path length over optimal path length for successful episodes, which measures exploration
efficiency. The Object Goal task requires spatial scene understanding (obstacle and navigable
space detection), semantic scene understanding (object detection), learning semantic priors (for
efficient exploration), and episodic memory (keeping track of explored and unexplored areas).

We evaluate three methods, each representative of one class of approaches. To represent
modular learning for Object Goal navigation, we picked [62]. To represent classical approaches,
we replace the semantic exploration policy of [62] with frontier exploration [18], which nav-
igates towards the closest unexplored region. Finally, to represent end-to-end learning, we
picked [43]. We will describe each method and what makes it representative of its class of
approaches in detail in the Materials and Methods. For now, Fig. 2 illustrates all the necessary
background to understand the Results and Discussion.

2.2 Natural Home Environments
We deployed navigation policies representative of each class of approaches in six natural home
environments never seen before in simulation or reality. We evaluated the policies over 60
episodes split across the six goal object categories and six homes. This represents 45 hours of
robot experiments (3 methods x 6 homes x 10 episodes per home x 15 minutes per episode).

Fig. 3 illustrates our main results quantitatively. Classical and modular learning approaches
perform better in the real world than simulation, up from 78% to 80% and 81% to 90% suc-
cess rate, respectively. In contrast, end-to-end learning performs much worse in the real world,
down from 77% to 23% success rate. This trend holds across all homes and all goal object
categories, as shown in Tables S1 and S2. Fig. 4 and S2 compare all approaches on the same
episode to illustrate these results qualitatively. Fig. S3 illustrates two typical failure modes of
the end-to-end learning policy, besides collisions. First, the policy often detects the goal object
but fails to stop nearby, which is consistent with prior work observing this ”last mile” failure in
simulation [41]. Second, the policy revisits the same locations, often semantically unrelated to
the goal object. These failure modes seem to display a lack of semantic understanding, a lack of
long-term memory, and poor exploration. Fig. S1 and Movie 1 illustrate how the modular learn-
ing approach improves over the classical approach. The learned exploration policy leverages
the semantics of the top-down map to search for a specific goal object effectively. In contrast,
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Fig. 3. Navigation performance in simulation vs. real at scale. We compare the Success Rate (SR)
and Success weighted by Path Length (SPL) of methods representative of classical, end-to-end-learning,
and modular learning approaches on large real world (60 episodes in 6 homes) and simulation datasets
(single-floor navigation episodes of val split of the 2022 Habitat Challenge with 1093 episodes in 20
simulated homes of the HM3D Semantics dataset [92]). (A) Performance for all methods is comparable
in simulation, at around 80% success rate. (B) Classical and modular learning approaches transfer well,
up from 78% to 80% and 81% to 90%, respectively. (C) End-to-end learning fails to transfer, down from
77% to 23% success rate.

the frontier exploration policy, which selects the closest unexplored region as the exploration
goal independently of the goal object, exhibits depth-first search behavior and fails to backtrack
using semantics.

2.3 Controlled Experiments in a Home Replicated in Simulation
We ran a controlled study in one home replicated in simulation. This serves two purposes.
First, this lets us decompose the discrepancy between results on a simulation benchmark and
the real world into (A) the discrepancy between the sim benchmark and the sim replica and
(B) the discrepancy between the sim replica and the real home. This lets us verify that our
experimental setting matches the sim benchmark: results in our sim replica should be close to
that of the sim benchmark. Second, this allows us to run an ablation study to select the best end-
to-end policy to evaluate at scale across all six homes. We replicate a single home in simulation
as 3D scanning and digitizing a house — with the same Matterport camera used to digitize
homes of the sim benchmark [94] — takes a few hours.

We first present the results of the ablation study we conducted to select the best end-to-end
policy to evaluate at scale across all six homes. Modular learning and classical approaches
only use first-person RGB-D and predicted segmentation images through a top-down semantic
map. This makes them independent of changes in camera parameters and lets us easily swap
semantic segmentation models between training and evaluation. In contrast, end-to-end learning

8



Fig. 4. Three approaches on the same episode. (A) Modular learning reaches the couch goal in 84
steps (SPL = 0.74). (B) End-to-end learning collides too many times (20 max) after 121 steps. (C) The
classical policy reaches the goal after 181 steps and a detour through the kitchen (SPL = 0.33).
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Table 1. Navigation performance in simulation vs. real on the same episodes in the same home.
We compare policies by Success Rate (SR) on a sim benchmark (single-floor navigation episodes of val
split of the 2022 Habitat Challenge with 1093 episodes in 20 simulated homes of the HM3D Semantics
dataset [92]), and the same home in sim and the real world (10 episodes). We compute the Sim-vs-Real
Correlation Coefficient (SRCC) introduced in [93], which is the Pearson correlation between binary
episode outcomes in sim vs. real (in [0, 1], higher is better). (A) Top table: In an ablation study of
end-to-end policies, we vary training camera parameters, the segmentation model training domain, and
the policy training algorithm. Bottom table rows 1-4: Real-world performance of end-to-end policy
ablations is inversely correlated to sim performance. Policy 1 is the best in sim but the worst in the real
world, while policy 4 — which we selected for large-scale evaluation — is the worst in sim but the best in
the real world. All variants other than policy 4 have a low SRCC, indicating their design overfits to sim.
(B) Bottom table rows 5-7: Performance on the sim replica is close to that on the sim benchmark, which
shows that our experimental setting matches that of the sim benchmark. Although, performance in the
real-world home is close to that on its sim replica, the SRCC is still relatively low because policies fail
different episodes in sim and the real world. As we will see in the Discussion, this is due to a disconnect
between error modes in sim and reality.

End-to-end learning ablations

End-to-end
Policy

Policy training settings
Camera parameters Segmentation training domain Policy training algorithm

End-to-end 1 Sim Benchmark Sim IL + RL
End-to-end 2 Robot Sim IL + RL
End-to-end 3 Robot Real-world IL + RL
End-to-end 4 Robot Real-world IL

Evaluation results

Navigation
policy Sim benchmark SR Real home

sim replica SR
Real home

SR
Real home

SRCC

End-to-end 1 0.77 0.80 0.00 0.20
End-to-end 2 0.71 0.70 0.00 0.30
End-to-end 3 0.61 0.60 0.10 0.40
End-to-end 4 0.48 0.50 0.30 0.60
End-to-end 0.48 0.50 0.30 0.60
Modular 0.81 0.80 0.90 0.70
Classical 0.78 0.80 0.90 0.70



approaches directly operate on RGB-D and predicted segmentation images. This means varying
camera parameters between training and evaluation settings introduces a domain gap, and an
end-to-end policy is closely tied to the segmentation model used in its network architecture
during training. These characteristics of end-to-end policies mean that in order to give them the
best chance to work on a robot, an ablation study is needed to select the best-performing policy.

Table 1 (A) shows results of this ablation study. We train four different end-to-end policies,
varying the camera parameters, segmentation model training domain, and training algorithm.
We measure each policy’s performance in sim, both on a large-scale benchmark and our sim
replica, and in the real home. Overall, Policy 1, trained with the camera parameters of the sim
benchmark, which we detail in the Materials and Methods section, and using a segmentation
model trained in sim, performs the best in sim but the worst in the real world. Policy 2, trained
with robot camera parameters, performs slightly worse in sim, which shows that our robot
camera parameters make the task slightly harder than the sim benchmark camera parameters.
Policies 3 and 4 that use a segmentation model trained in the real world perform worse in sim but
better in the real world. This shows that using a segmentation model trained in sim is overfitting
to sim. Policy 4, which is trained with imitation learning (IL) only as opposed to IL followed by
reinforcement learning (RL) fine-tuning, performs the worst in sim but the best in reality. This
shows that RL fine-tuning can overfit to sim. We select policy 4 to evaluate at scale across all
six homes.

Overall, these results show that performance in sim is often inversely proportional to per-
formance in the real world because design choices to improve performance in sim can easily
overfit to sim. We can quantify this observation through the Sim-vs-Real Correlation Coeffi-
cient (SRCC) introduced in [93], which measures how well sim results can predict real-world
results. The SRCC is low for all end-to-end policy variants, starting as low as 0.20 for policy 1,
which performs best in sim, and increasing to 0.60 for policy 4 as we correct for design choices
that overfit to sim.

Now that we have selected the best end-to-end policy to evaluate at scale, Table 1 (B) de-
composes the discrepancy between results for all selected methods on the sim benchmark and
the real world into the discrepancy between the sim benchmark and the sim replica, and the
discrepancy between the sim replica and the real home. First, performance on the sim replica
is close to that on the sim benchmark, which verifies that our experimental setting matches that
of the sim benchmark. Second, even though absolute performance is fairly close in sim and the
real world for the policies we evaluate at scale (e.g., 0.80 sim vs. 0.90 real success rate for mod-
ular learning), the SRCC is still low (e.g., only 0.70 for modular learning) because each method
fails different episodes in sim and the real world. As we will see in the Discussion section, this
is due to a disconnect between error modes in sim and reality.
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3 Discussion
In this section, we (A) analyze error modes of the modular learning approach in sim vs. real
to make sense of its rise in performance from sim to real, (B) emphasize the significance of
the 90% real-world success rate of modular learning, and (C) investigate why modular learning
transfers better than end-to-end learning and reflect on what this means for the field.

3.1 Modular Learning Error Modes in Real-world vs. Simulation
To make sense of the rise from 81% sim to 90% real-world success rate for the modular learning
approach, we compare its sim and real error modes in Table S3. Surprisingly, Table S3 shows
there is nearly no overlap between sim and real error modes. Errors in the real world largely
stem from depth sensor errors (5 out of 6 total errors), as illustrated in Fig. S4 and Movie 1,
while the sim benchmark assumes perfect depth sensing. When approaching a door at an angle,
noise in depth can block it in the map, making a room inaccessible without a map denoising
mechanism. Reflection in mirrors and TVs can also cause depth sensor errors and downstream
navigation failures. In contrast, a lot of the failures that occur in sim are due to reconstruction
errors — both visual and physical — which do not happen in reality. Indeed, 10.1% out of
the total 18.6% episode failures in the sim benchmark are due to segmentation errors, while
segmentation errors did not cause any episode failures for modular learning in the real world.
Segmentation errors are more common in sim because visual reconstruction can make objects
unrecognizable, as illustrated in Fig. S5 (A) and Movie 1. Physical reconstruction errors rep-
resent another 5.5% of the total 18.6% episode failures in sim. They lead to noisy navigation
meshes with narrow pathways that are hard to navigate for discrete planners that work well in
the real world, as illustrated in Fig. S5 (B) and Movie 1. This gap in error modes explains the
performance gap between sim and reality for modular learning.

The lack of overlap between sim and real-world error modes is concerning because it limits
the usefulness of simulation to diagnose bottlenecks and further improve policies. This is a
practical working definition of the Sim-to-Real gap: we only care about improving sim realism
to the extent that it lets us develop better real-world policies. A gap in error modes prevents us
from doing so. This stresses the need to always evaluate semantic navigation policies on real
robots for results to be meaningful. Based on our analysis, we propose concrete steps forward
to close this gap: (A) introduce realistic depth noise models for target deployment robots in sim
benchmarks, (B) improve the visual quality of sim 3D scans, (C) improve the quality of sim
navigation meshes.

3.2 Towards Solving Navigation to Objects with Modular Learning
The main takeaway of this study for practitioners looking to build robots that navigate to objects
is that the modular learning pipeline is very reliable, with a 90% success rate in limited time and
efficient object search with an SPL of 0.64. In addition, we show that the remaining errors are
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Fig. 5. Sim-vs-Real domain invariances, gaps, and their effects on segmentation. From left to right,
all images come from episodes in our controlled study: (A) The semantic map space is invariant between
the real world and simulation. (B) The image space exhibits a large gap between the real world and
simulation. (C) This gap causes a large drop in performance when transferring a segmentation model
trained in the real world to simulation and vice versa.

primarily due to depth sensor failures, which offers a clear path towards even greater reliability
through better sensing or methods better able to deal with depth noise.

One limitation of our study is the restriction to six goal object categories to align with current
sim benchmarks. All methods we evaluate are straightforward to extend to a larger finite set of
categories, and opportunities for future work include extensions to an unbounded set of object
categories with open-vocabulary detectors [95] and instance-level object goals [96].

3.3 Why Modular Learning Transfers Better than End-to-end Learning
Fig. 5 illustrates why modular learning transfers better than end-to-end learning. The semantic
exploration policy of the modular learning approach takes a semantic map as input, while the
end-to-end policy directly takes the RGB-D frames as input. The figure shows that the semantic
map space is invariant between simulation and the real world. This is due to the semantic map
abstracting away pixels in favor of semantic categories and reducing the spatial granularity of
the map voxel size (5 cm in our experiments). In contrast, the RGB image space exhibits a large
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gap between the real world and simulation because current reconstruction engines cannot yet
generate photo-realistic images. This causes a large drift between the training and evaluation
domains for the deep neural network of the end-to-end policy.

The significance of the gap from simulation images to real-world images is well illustrated
by the segmentation errors it causes in Fig. 5. A segmentation model trained in the real world
suffers a severe performance drop when transferred to simulation, down from 0.50 to 0.35 mean
average precision at a 0.50 intersection over union threshold (mAP@0.5). Similarly, a segmen-
tation model trained in simulation suffers an even larger performance drop when transferred to
the real world (down from 0.45 to 0.10 mAP@0.5). If semantic segmentation transfers poorly
from simulation to reality, it is reasonable to expect an end-to-end semantic navigation policy
trained on sim images to transfer poorly to real-world images. While the image domain gap af-
fects a segmentation model over a single prediction, the gap accumulates over many predictions
made over a long horizon for an end-to-end navigation policy.

Because of this image domain gap, design choices easily overfit to simulation. Two rep-
resentative examples in our results are that (A) end-to-end policy architectures that directly
operate on RGB images don’t transfer because they overfit to simulation images, and (B) the
common practice of training segmentation models on simulation data improves performance in
simulation but hurts in the real world.

How can we address this image domain gap? At this point, it is worth taking a step back
to briefly survey how other domains of robotics tackle Sim-to-Real gaps. Prevalent options to-
day [88] are: (A) train on real-world data, (B) train in simulation with domain randomization,
and (C) train in simulation with modularity and abstraction. Training on real-world data by-
passes any Sim-to-Real gap but is expensive, slow, and potentially unsafe. It is the option of
choice for perception stacks across robotics and has been applied to end-to-end control in do-
mains where sub-optimal policy operation is safe, like grasping and static manipulation [97, 98].
But it is not straightforward to scale up for semantic navigation as mobile robots require constant
supervision. This leaves us with simulation training. Domain randomization [99] — random-
izing environmental factors that are hard to simulate accurately during training to make policies
robust to these factors — has been applied successfully in domains where randomization is
straightforward like dexterous manipulation [100] where one needs to randomize over physics
and single object appearance. But it is still an open problem whether RGB image randomiza-
tion can be scaled up to entire houses to bring the same robustness to semantic navigation [88].
Our final option, training in simulation with modularity and abstraction [56] — designing ab-
stractions of the input raw sensor data that contain sufficient information to solve the task while
being invariant to environmental factors that are hard to simulate accurately — is the practice
of choice in autonomous flight [101, 89], legged locomotion [84, 83], grasping [59, 58], and a
promising path in autonomous driving [56].

In our view, training in simulation and Sim-to-Real transfer via modularity and abstraction
is the most promising path forward for semantic navigation. Example semantic abstractions
could be first-person semantic segmentation masks [56], topological scene representations [53],
or top-down spatial semantic maps [62]. One limitation of our study and opportunity for future
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work is that we didn’t take further steps in this direction — like evaluating an end-to-end policy
abstracting RGB frames through semantic frames.

4 Materials and Methods
We deployed three navigation policies on a robot across six homes to study how well different
methods to navigate to object categories transfer from simulation to the real world. This section
outlines our Sim-to-Real transfer methodology, details the specific methods we evaluate, and
explains what makes them representative of broader classes of approaches.

4.1 Sim-to-Real Transfer Methodology
Hardware and Software Stack: We deployed navigation policies on a Hello Robot Stretch
robot [90]. We selected Stretch because it is low-cost, lightweight, and compact, allowing us to
transport it out of the lab into real homes easily. We trained all learned components of navigation
policies in simulation with the Habitat platform [102]. We selected Habitat for its simulation
speed, which is crucial for training navigation policy components with reinforcement learning.
At inference time, policies were deployed with the fairo library [103] to run the same navigation
code in simulation and the real world.

Matching Policy Inputs and Outputs from Sim to Real: All navigation policies we evaluated
were trained in simulation and had so far only been evaluated in simulation. To transfer these
policies to a robot and be able to compare real-world results to simulation, we had to match
the Object Goal task input and output spaces from sim on the robot. In the Object Goal task,
the robot receives an RGB-D image and a sensor pose at each step. Stretch’s Intel RealSense
D435i camera gives us (640 x 480) RGB-D images with a 42-degree horizontal field of view.
We preprocess the depth with standard spatial and temporal filters and threshold all values
beyond the camera’s confidence range (4 meters). We use off-the-shelf LiDAR-based Hector
SLAM [104] to estimate the robot’s pose. We also use LiDAR for collision detection to deploy
policies safely. To guarantee a fair comparison to simulation settings, we restrict the use of
LiDAR to collision detection and localization and do not use it for mapping. Given the output
action space is discrete — move forward 25 cm, turn left/right 30 degrees, or stop — it is
straightforward to match on the robot. Sim-to-Real transfer is illustrated in Fig. 6 (A).

Generating Episodes in Real Homes: We evaluate the robot on 60 episodes across six object
goal categories (“chair”, “couch”, “potted plant”, “toilet”, “tv”, and “bed”) in six homes. We
selected these goal object categories to be able to directly compare results in the real world with
that of a leading sim benchmark: the Habitat 2022 Object Navigation Challenge. We selected
homes for their visual diversity and size. To generate an episode within a home, we selected
a goal category and a starting location for the robot while trying to balance the distribution of
goal object categories and match the distribution of geodesic distances to the goal to that of the
Habitat Challenge, as shown in Fig. S6. We consider an episode successful if the robot called
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Fig. 6. Three approaches to navigate to objects and their Sim-to-Real transfer. (A) We match policy
inputs from sim in the real world: we estimate depth with a stereo camera, and the pose with LiDAR-
based SLAM. (B) Policy architectures in detail from left to right, top to bottom. The semantic mapping
module of classical and modular learning approaches segments the RGB frame, projects it into a 3D
semantic voxel map using the depth and pose, and sums over the height to compute a 2D semantic map.
The semantic exploration policy of the modular learning approach predicts an exploration goal with a
feed-forward neural network (FFNN) as a function of map features computed with a convolutional neural
network (CNN) and the goal object. The frontier exploration policy of the classical approach explores
the closest unexplored region independently of the goal object. Both approaches plan low-level actions
to reach the high-level exploration goal. The end-to-end approach segments the RGB frame with a pre-
trained segmentation model, computes RGB, depth, and semantic features with CNN backbones, which
can be also be pre-trained, and directly predicts low-level actions from frame features, the goal object,
and the pose with a Gated Recurrent Unit (GRU).



the stop action close enough (less than 1 meter) to an instance of the goal category within the
time (200 steps) and collision (20 collisions) budgets. To compute the Success weighted by
Path Length (SPL) [1], we measure the geodesic distance to the goal object instance closest to
the starting location. To replicate one home and its episodes in simulation in our controlled
study, we scanned and digitized the home with a Matterport Pro2 3D camera and matched the
real-world goals and starting positions in sim.

Fig. 6 (B) illustrates the architectures of the three policies we evaluate. We first describe
the classical and modular learning semantic mapping approaches before turning our attention
to end-to-end learning approaches.

4.2 Classical and Modular Learning Approaches
Extending Classical Approaches to Navigate to Objects: Classical simultaneous localiza-
tion and mapping (SLAM) approaches to spatial navigation typically build a spatial map of
the environment while simultaneously localizing the robot relative to its growing map [12, 13],
and navigate to geometric points within this map via path planning. Adapting these methods
to navigate to objects requires detecting objects, keeping objects in memory, and exploring
semantically towards objects. Semantic SLAM methods [19, 20, 21, 22, 23, 24] naturally ex-
tend SLAM to detect objects and keep them in memory in a spatial semantic map but offer no
solution for efficient semantic exploration. Among the many heuristics for goal-agnostic explo-
ration proposed in the classical navigation literature, we select frontier-based exploration [18]
— navigate towards the closest unexplored region — to represent classical exploration methods
because it was particularly effective in prior work [62]. As shown in Fig. 6 (B), this completes
a pipeline representative of classical approaches: semantic mapping to keep seen objects in
memory, frontier exploration to select high-level goals, and path planning to select low-level
actions.

Note that if we only care about navigating to a single object starting with zero information
about the environment — the setting we evaluate in this paper — we don’t even need to keep
objects in memory in a semantic map in the classical approach. We can simply use a geometric
map for exploration and planning and head toward the goal object as soon as we detect it in the
frame with a pre-trained object detector. We add semantic mapping to the classical approach for
ease of implementation — we can head towards an object by projecting it into a single semantic
channel in the map and planning toward it — and to make it applicable to the more practical
but harder-to-evaluate setting where the robot might need to execute several such object search
commands in a row.

Modular Learning to Navigate to Objects: While frontier exploration is effective, as shown
in our results, it is necessarily suboptimal because it ignores the goal object. We intuitively
understand where a “couch” is more likely to be found. This is where modular learning comes
into play: can we train an exploration policy to leverage the statistical regularities in the layout
of objects in homes to explore more efficiently? This is what the semantic exploration method
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proposed in [62] does. We selected it to represent modular learning as it cleanly isolates the
problem of learning an exploration module from the rest of the navigation problem. As shown
in Fig. 6 (A), it preserves the structure of the classical pipeline to navigate to objects presented
above but replaces frontier exploration with a learned semantic exploration module. With this
high-level picture in mind, we explain each component in detail.

Semantic Map Representation: The semantic map is a spatial representation of the environ-
ment that keeps track of objects, obstacles, and explored areas. Concretely, it is a binary K x
M x M matrix where M x M is the map size and K is the number of map channels. Each cell
of this spatial map corresponds to 25 cm2 (5 cm x 5 cm) in the physical world. Map channels
K = C +4 where C is the number of semantic object categories, and the remaining 4 channels
represent the obstacles, the explored area, and the agent’s current and past locations. An entry
in the map is one if the cell contains an object of a particular semantic category, an obstacle, or
is explored, depending on the channel, and zero otherwise. The map is initialized with all zeros
at the beginning of an episode and the agent starts at the center of the map facing east.

Semantic Mapping Module: In order to build the semantic map, we need to predict semantic
categories and segmentation masks of objects in first-person observations. We use a Mask-
RCNN [105] with ResNet50 [106] backbone pretrained on MS-COCO for object detection and
instance segmentation. We project first-persons semantic segmentation into a point cloud using
the depth, bin the point cloud into a 3D semantic voxel map, transform it from the robot’s
coordinate system to that of the semantic map using the robot pose, and finally sum over the
height to compute a 2D semantic map.

Frontier Exploration Policy: With our semantic map at hand, it is straightforward to imple-
ment frontier exploration: each step, we select the boundary between the explored and unex-
plored region of the map, i.e., the frontier, and within this boundary select the point closest to
the robot in geodesic distance. This exploration strategy exhibits depth-first search behavior:
once the robot heads into a direction, the closest unexplored region is in front of it until an
obstacle blocks the way. As soon as the goal object is seen, i.e., as soon as the channel of
the semantic map for the object goal has a nonzero element, we stop exploring and select all
non-zero elements as the goal.

Semantic Exploration Policy: The semantic exploration strategy decides a goal as a function
of the current semantic map and the goal object. This requires learning semantic priors on
the relative arrangement of objects and areas in homes. As shown in Fig. 6 (B), map features
are computed with a convolutional neural network (CNN) and passed through a feed-forward
neural network (FFNN) along with a learnable embedding for the goal object to compute a
goal in [0, 1]2 , which is then converted to top-down map space. The policy is trained using
reinforcement learning (RL) with the distance reduced to the nearest goal object as the reward.
We use a policy trained in [62] on home layouts from the Gibson dataset [107]. As in [62], we
sample the long-term goal at a coarse time-scale, once every 25 steps. This reduces the time-
horizon for exploration in RL exponentially and consequently, reduces the sample complexity.
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As for the frontier exploration policy, as soon as the goal object is seen, we stop exploring and
select it as the goal.

Planner: Given a long-term goal output by the frontier or semantic exploration policy, we use
the Fast Marching Method [108] as in [62] to plan a path and the first low-level action along
this path deterministically. Although the semantic exploration policy acts at a coarse time scale,
the planner acts at a fine time scale: every step we update the map and replan the path to the
long-term goal.

Sim-to-Real Transfer: Semantic mapping methods are straightforward to transfer to the robot
as they are independent of camera parameters and the semantic map space is invariant between
sim and the real-world, as presented in the Discussion section.

4.3 End-to-end Learning Approaches
End-to-end Learning to Navigate to Objects: In contrast to modular approaches that explic-
itly build a semantic map of the environment and plan actions, end-to-end learning approaches
directly predict actions from raw sensor data with a deep neural network. The network needs
to learn to understand the scene spatially and semantically, keep track of long-term memory,
and plan actions. Given each of these tasks is hard in isolation, end-to-end learning approaches
typically require tens of thousands of expert demonstrations or hundreds of millions of steps of
reinforcement learning to train. Given neither of these can realistically be collected in the real
world for our Object Goal navigation task, training must be done in simulation. As illustrated
in Fig. 6 (B), at each step, the typical end-to-end architecture for long horizon tasks with high-
dimensional image input computes image features with one or multiple convolutional neural
networks, which can be trained from scratch or pre-trained, and keeps track of memory and
plans implicitly with a recurrent neural network, in our case a gated recurrent unit (GRU) [109].

Habitat-Web Policy: We selected Habitat-Web [43] as a representative example of end-to-end
learning for the Object Goal navigation task because it closely follows the above paradigm and
has the highest performance on a leading sim benchmark, the 2022 Habitat Challenge, at the
time of publication. Habitat-Web [43] trains an end-to-end policy from human demonstrations
on the Object Goal task in the Habitat simulator. We preserve the general architecture of the
policy and swap different components in our ablation study to find the policy that works best in
the real world. Semantic segmentation is predicted from RGB (and possibly depth) with a pre-
trained and frozen segmentation model. First-person RGB, depth, and semantic frame features
are computed with multiple CNN backbones, leveraging pre-trained models when available
to reduce sample complexity. RGB, depth, and semantic frames are then fed into a GRU [109]
along with other low dimensional features — the robot pose, a learnable goal object embedding,
the fraction of the visual input occupied by the goal category, and the previous action — to
predict a distribution over next actions.

Architecture and Training Details: The segmentation model used in the original architecture
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is a RedNet [110] pre-trained on the SUN RGB-D dataset [111] and fine-tuned on images from
the Habitat simulator. As shown in our results, using a segmentation model fine-tuned in simu-
lation hurts performance in the real world. In our ablation study of end-to-end architectures, we
thus replace this model with the same Mask-RCNN pre-trained on MS-COCO used by modu-
lar semantic mapping methods. Depth features are computed with a ResNet50 pre-trained on
Point Goal navigation [112]. RGB and semantic frame features are computed with a ResNet18
trained from scratch. The network is first trained with imitation learning (IL) on 80,000 human
demonstrations (or approximately 20 million actions) collected for the Object Goal task in the
Habitat simulator over three days with 128 Nvidia V100 32GB GPUs. It is then fine-tuned
with reinforcement learning (RL) with a sparse binary reward when the goal is found, over 150
million steps in an additional three days on 32 Nvidia V100 32GB GPUs. Our ablation study
of end-to-end policies shows that RL fine-tuning helps in sim but hurts in the real world.

Sim-to-Real Transfer: While semantic mapping methods are independent of camera param-
eters, end-to-end methods directly operate on first-person frames, and any change in camera
parameters causes a large domain gap. Given our robot camera parameters are different from
those used to train the original Habitat-Web policy — (640 x 480) frames with a 42◦ horizontal
field of view, as opposed to (480 x 640) frames with a 79◦ horizontal field of view — we retrain
the policy with robot camera parameters replicated in simulation.

As shown in Fig. 6 (A), real-world depth estimated via stereo camera is noisy, which intro-
duces an additional domain gap. To compensate for this, we tried training with the indoor depth
noise model provided by Habitat [113], as we didn’t have any noise model tuned specifically
for our robot’s Intel RealSense D435i camera. We found this to hurt real-world performance,
suggesting this noise model doesn’t match our robot’s camera noise.

While we can easily swap a different segmentation model in modular semantic mapping
methods, changing the segmentation model causes a large domain gap for end-to-end methods
and requires training a new policy.

In contrast to simulation, robot discrete actions are also not deterministic in the real world
due to actuation noise: a 25 cm forward move or 30 degree turn command will not have the
exact intended effect. The usual way to compensate for this is to simulate actuation noise
during training. We did not simulate actuation noise because a prior Sim-to-Real study of Point
Goal navigation [93] found this to hurt real-world performance.

Finally, while we can easily inspect the output of various modules — like the semantic map,
the exploration goals, or the plans — to diagnose issues when transferring modular methods, our
only recourse when transferring end-to-end policies is to try matching training and evaluation
inputs as closely as possible. All these considerations make transferring end-to-end policies
much more challenging than modular methods.
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Fig. S1. Comparison of modular learning and classical policies. (A) Top: the learned se-
mantic exploration of the modular learning approach finds the toilet goal in only 74 steps. (B)
Bottom: the frontier exploration of the classical approach fails to find the toilet goal in 200
steps.



Fig. S2. Three approaches on the same episode. (A) Both the classical and modular learning policies
reach the toilet goal efficiently, in 108 and 122 steps, respectively. (B) The end-to-end learning policy
fails to explore beyond the kitchen and dining room and never reaches the toilet goal.
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Fig. S3. Failure modes of end-to-end learning. (A) The end-to-end policy detects the toilet
goal but fails to stop and heads back towards the living room. (B) The end-to-end policy fails
to explore effectively, revisiting the same locations in the kitchen while looking for a TV.



Fig. S4. Real-world depth sensor error modes. Top to bottom: (A) Depth noise walls a door
when approaching at an angle. (B) Reflection in a mirror creates a duplicate bed on the map
instead of an obstacle wall. (C) Reflection on a TV causes depth sensed beyond the sensor limit,
and the TV is not mapped.



Fig. S5. Simulation visual and physical reconstruction error modes. (A) Visual recon-
struction errors due to imperfect 3D scanning make segmentation errors more common in sim
than reality. (B) Physical reconstruction errors lead to noisy navigation meshes with narrow
pathways that are hard to navigate for discrete planners that work well in the real world.
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Fig. S6. Distributions of goal objects and geodesic distances to goal in reality vs. sim. (A)
Distributions of goal objects and geodesic distances to the goal are comparable between a sim
benchmark (val set of Habitat Challenge 2022) and our real-world evaluation setting.
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Table S1. Navigation performance on all 60 episodes. (A) Details of navigation performance of
classical, modular learning, and end-to-end learning approaches on 60 episodes across 6 object goal
categories (“chair”, “couch”, “potted plant”, “toilet”, “tv”, and “bed”) in 6 homes.

Episode Classical Modular Learning End-to-end Learning

Home Goal Object Shortest Path
Length (m)

Success
(SPL / Failure)

Collisions
/ Steps

Success
(SPL / Failure)

Collisions
/ Steps

Success
(SPL)

Collisions
/ Steps

couch2 3.9 3 (0.64) 2 / 51 3 (0.75) 1 / 39 3 (0.76) 2 / 40
chair2 4.8 3 (0.98) 0 / 35 3 (0.70) 0 / 45 7 4 / 44
plant2 6.3 3 (0.77) 8 / 63 3 (0.72) 1 / 64 7 31 / 200
chair1 6.7 3 (0.48) 9 / 114 7 (TV reflection) 25 / 145 7 10 / 66

tv1 7.5 7 (TV reflection) 15 / 200 3 (0.42) 8 / 125 7 3 / 200
couch1 8.1 3 (0.33) 10 / 181 3 (0.74) 2 / 78 7 22 / 121
plant1 9 3 (0.60) 4 / 130 3 (0.76) 6 / 127 3 (0.99) 1 / 46
toilet2 10.6 3 (0.95) 3 / 72 3 (0.66) 6 / 127 7 16 / 200
toilet1 13.3 3 (0.89) 3 / 108 3 (0.77) 7 / 122 7 14 / 188

1

bed1 14.2 3 (0.80) 2 / 125 3 (0.80) 7 / 135 3 (0.51) 16 / 190
toilet2 3.5 7 (mirror reflection) 37 / 126 3 (0.49) 3 / 60 7 18 / 180

tv1 4.2 7 (segmentation error) 7 / 136 3 (0.99) 5 / 181 7 4 / 203
chair3 5.5 3 (0.64) 1 / 66 3 (0.97) 0 / 43 3 (0.49) 5 / 68
plant2 7.7 3 (0.49) 3 / 125 3 (0.63) 4 / 86 7 45 / 138
couch2 7.8 3 (0.35) 8 / 156 3 (0.66) 4 / 101 7 11 / 200
chair1 8.2 3 (0.86) 3 / 79 3 (0.79) 1 / 83 7 11 / 200
chair2 8.6 3 (0.64) 12 / 103 3 (0.47) 4 / 122 7 4 / 104
bed1 8.7 3 (0.73) 7 / 75 3 (0.67) 7 / 103 7 22 / 189

toilet1 9.1 7 (exploration failure) 7 / 200 7 (depth noise) 11 / 137 7 1 / 98
couch1 9.7 3 (0.82) 2 / 90 3 (0.74) 5 / 87 7 30 / 200

2

plant1 9.8 3 (0.51) 3 / 153 3 (0.69) 2 / 94 3 (0.51) 12 / 153
plant2 3.1 3 (0.76) 2 / 27 3 (0.71) 1 / 28 7 22 / 200

tv1 4.2 3 (0.71) 6 / 68 3 (0.79) 6 / 41 7 25 / 173
bed1 4.5 3 (0.72) 1 / 33 3 (0.72) 1 / 33 3 (0.27) 3 / 109
bed2 5.2 3 (0.49) 3 / 71 3 (0.60) 3 / 69 7 4 / 39

chair1 5.9 3 (0.99) 3 / 53 3 (0.84) 2 / 54 7 24 / 200
couch1 9.3 3 (0.69) 4 / 149 3 (0.45) 8 / 160 7 10 / 137
plant1 10.2 3 (0.46) 8 / 159 3 (0.60) 4 / 121 7 8 / 200

3

toilet1 10.3 3 (0.83) 11 / 179 7 (depth noise) 8 / 200 7 23 / 200
couch2 2 3 (0.88) 0 / 19 3 (0.99) 0 / 15 7 32 / 94
bed1 5.5 7 (segmentation error) 6 / 133 3 (0.39) 2 / 104 3 (0.60) 2 / 68

plant2 5.6 7 (depth noise) 4 / 81 3 (0.20) 10 / 187 7 24 / 163
couch1 6.1 3 (0.90) 8 / 65 3 (0.28) 6 / 154 7 25 / 200
bed2 6.4 7 (segmentation error) 22 / 148 3 (0.61) 3 / 82 7 9 / 94

chair1 7.2 3 (0.86) 3 / 61 3 (0.81) 1 / 63 3 (0.31) 11 / 179
chair2 7.3 3 (0.82) 13 / 94 3 (0.72) 6 / 69 7 21 / 200
plant1 8.3 3 (0.70) 8 / 93 3 (0.62) 8 / 104 7 7 / 200

tv1 9.7 7 (TV reflection) 5 / 187 7 (TV reflection) 30 / 188 7 43 / 200
plant3 10.2 7 (depth noise) 15 / 163 7 (depth noise) 6 / 101 7 10 / 81

4

bed3 14.3 3 (0.52) 4 / 152 3 (0.90) 2 / 98 3 (0.85) 12 / 101
tv1 2 3 (0.98) 1 / 17 3 (0.89) 0 / 22 3 (0.90) 1 / 19

chair1 3.4 3 (0.87) 1 / 27 3 (0.97) 1 / 25 3 (0.83) 8 / 34
couch2 4.4 3 (0.78) 0 / 36 3 (0.82) 0 / 31 7 9 / 45
plant1 4.8 3 (0.69) 2 / 59 3 (0.96) 1 / 43 7 16 / 79
chair2 5 3 (0.99) 0 / 33 3 (0.99) 0 / 33 7 14 / 98
couch1 5.2 3 (0.57) 4 / 71 3 (0.77) 3/ 51 7 19 / 134
bed2 7.2 3 (0.96) 3 / 58 3 (0.92) 2 / 62 3 (0.95) 10 / 60

toilet1 8 7 (exploration failure) 10 / 200 3 (0.86) 3 / 89 7 26 / 200
bed1 8.7 3 (0.82) 5 / 82 3 (0.37) 6 / 163 7 5 / 82

5

toilet2 12.1 7 (exploration failure) 10 / 200 7 (exploration failure) 8 / 200 7 17 200
toilet1 3.3 3 (0.84) 2 / 29 3 (0.90) 1 / 29 3 (0.69) 6 / 39
chair1 3.8 3 (0.98) 1 / 32 3 (0.92) 1 / 32 3 (0.78) 7 / 45
chair2 4.7 3 (0.48) 3 / 64 3 (0.94) 1 / 32 7 12 / 87
plant1 4.8 3 (0.55) 2 / 60 3 (0.36) 4 / 104 7 9 / 70
couch3 5.1 3 (0.61) 5 / 76 3 (0.61) 2 / 60 7 18 / 149
couch2 7.4 3 (0.54) 4 / 112 3 (0.79) 4 / 85 7 16 / 122
bed1 10.1 3 (0.86) 1 / 94 3 (0.83) 1 / 83 7 33 / 200

couch1 10.2 3 (0.66) 1 / 125 3 (0.53) 6 / 148 7 24 / 200
toilet2 10.9 3 (0.58) 4 / 139 3 (0.59) 6 / 187 7 4 / 139

6

bed2 13.1 7 (depth noise) 4 / 200 3 (0.45) 14 / 186 7 26 / 200
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Table S2. Navigation performance aggregated by home and goal object. We compare approaches
by Success Rate (SR) and Success weighted by Path Length (SPL). (A) Results are consistent across
homes. (B) Results are consistent across goal objects.

Home Modular Learning
SR (SPL)

Classical
SR (SPL)

End-to-end Learning
SR (SPL)

1 0.90 (0.63) 0.90 (0.64) 0.30 (0.23)
2 0.90 (0.61) 0.70 (0.44) 0.10 (0.05)
3 0.88 (0.59) 1.00 (0.70) 0.13 (0.03)
4 0.80 (0.49) 0.50 (0.39) 0.30 (0.17)
5 0.90 (0.76) 0.80 (0.67) 0.30 (0.27)
6 1.00 (0.69) 0.90 (0.61) 0.20 (0.15)

Goal Modular Learning
SR (SPL)

Classical
SR (SPL)

End-to-end Learning
SR (SPL)

Couch 1.00 (0.72) 1.00 (0.67) 0.08 (0.06)
Chair 0.90 (0.78) 1.00 (0.82) 0.33 (0.20)
Bed 1.00 (0.70) 0.70 (0.56) 0.45 (0.29)

Plant 0.90 (0.58) 0.80 (0.53) 0.18 (0.14)
Toilet 0.66 (0.47) 0.55 (0.45) 0.11 (0.08)

TV 0.83 (0.66) 0.50 (0.42) 0.20 (0.18)
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Table S3. Modular learning real vs. sim error modes. (A) Real-world errors largely stem from depth
sensor errors. (B) Sim errors from reconstruction errors: segmentation errors (more common in sim due
to imperfect visual reconstruction) and navigation mesh errors (imperfect physical reconstruction).

Error mode 6 real homes Sim replica Sim benchmark

Segmentation error 0 / 6 2 / 2 10.1% / 18.6%
Navigation mesh error - 0 / 2 5.5% / 18.6%
Exploration failure 1 / 6 0 / 2 3.0% / 18.6%
Depth sensor error:
1 - Noise closes door
2 - Reflection (mirror, TV)

5 / 6 - -

Table S4. Modular learning programmatic error analysis on sim benchmark. We isolate (A) errors
due to multi-floor navigation by comparing performance on all episodes and the subset of episodes with
start and goal on the first floor, (B) errors due to segmentation failures by introducing ground-truth
segmentation, (C) errors due to exploration failures by introducing a very large time budget (2000 steps).

Episode Set Evaluation Condition Successful Episodes

All episodes (2000) 500 steps budget, predicted segmentation 1078 / 2000

Episodes with start and
goal on first floor (1093)

500 steps budget, predicted segmentation 733 / 1093
500 steps budget, ground-truth segmentation 843 / 1093
2000 steps budget, ground-truth segmentation 876 / 1093

Table S5. Modular learning manual analysis of remaining errors on sim benchmark. We manually
classify the error mode for each of the remaining 1093− 876 = 217 episodes.

Error Mode Episodes

Navmesh/planning error (agent stuck in narrow pathway) 60 / 217
Annotation error (agent reaches instance of goal category

that is not annotated as belonging to the goal category)
157 / 217

Table S6. Modular learning episode outcomes on sim benchmark. We aggregate programmatic and
manual error analyses among single-floor navigation episodes (1093 episodes).

Outcome Episodes Proportion

Segmentation error 110 (843 - 733) 10.1%
Navigation mesh error 60 5.5%
Exploration failure 33 (876 - 843) 3.0%
Success 890 (733 + 157) 81.4%
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