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Abstract

New efforts are using head-cameras and eye-trackers worn by infants to capture everyday visual 

environments from the infant learner’s point of view. From this vantage point, the training sets for 

statistical learning develop as the infant’s sensory-motor abilities develop, yielding a series of 

ordered data sets for visual learning that differ in content and structure between time points but are 

highly selective at each time point. These changing environments may constitute a 

developmentally ordered curriculum that optimizes learning across many domains. Future 

advances in computational models are needed to connect the developmentally changing content 

and statistics of infant experience to the internal machinery that does the learning.
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What are the data for learning?

The world presents learners with many statistical regularities. Considerable evidence 

indicates that humans are adept at discovering those regularities across many different 

domains including language, vision, and social behavior [1]. Accordingly, there is much 

interest in “statistical learning” and how learners discover regularities from complex data 

sets like those encountered in the world. Much of this interest is directed to the statistical 

learning abilities of human infants. In the first two years of life, infants make strong starts in 

language, in visual object recognition, in using and understanding tools, in social behaviors, 

and more. By the benchmarks of speed, amount, diversity, robustness, and generalization, 

human infants are powerful learners. Any theory of statistical learning worth its salt needs to 

address the growth in knowledge that occurs during infancy.

All statistical learning depends on both the internal machinery that does the learning and the 

regularities in the data on which that machinery operates. The usual assumption is that the 
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learning environment is rich but noisy with data for many different tasks all mixed together. 

Thus, the main theoretical debates concern the nature of the learning machinery and the 

constraints that enable learners to sort through and learn from messy data [2, 3]. 

Contemporary research takes two principle forms: (a) laboratory experiments with human 

participants that test predictions about hypothesized learning mechanisms [4,5] and (b) 

computational models showing that the hypothesized machinery can use key statistical 

regularities [6,7] to accomplish certain learning tasks. However, the relevance of these 

efforts to understanding the prowess of infants’ everyday learning is limited because the data 

sets used in most experimental studies and in computational modeling differ from the data 

on which everyday learning depends (Figure 1).

What are the data relevant to infant statistical learning? They are the data that make contact 

with the infant sensors. These sensors are attached to the body and thus the sensory data for 

learning are determined by the disposition of the infant’s body in space [Box 1]. Advances 

in wearable sensors now provide researchers with the means to capture the learning 

environment from the perspective of the learner [8–11]. Accordingly, and in contrast to the 

usual focus on learning mechanisms, this review focuses on the data for statistical learning 

from the infant’s perspective.

Box 1

Ego-centric Vision

Real world visual experience is tied to the body as it acts in the world. As a consequence, 

the learner’s view of the nearby environment is highly selective. The colored objects in 

Figure I are in the depicted infant’s view and would be captured by the head camera. 

Many things in the room and spatially near the infant are not in view. Unless the infant 

turns her head and looks, the dog, the train, her mother’s face, the window, and the crib 

are not in view. The perceiver’s location, posture, and ability or motivation to change 

their posture systematically bias first-person visual information. The emerging area of 

research called ego-centric vision studies fundamental questions in vision from the 

perspective of freely moving individuals, and growing evidence suggests that many of the 

properties are fundamentally different from those found in laboratory studies that restrict 

body movements [17, 69–72]. For example, freely moving perceivers use their whole 

body to select visual information with eyes and head aligned. Gaze is predominantly 

directed to the center of a head-centered frame of reference, making head cameras – with 

or without eye-trackers – a useful method for capturing the ego-centric view [71–73]. A 

second example concerns the study of “natural statistics” of vision. Considerable 

progress in understanding adult vision has been made by studying the visual statistics of 

“natural scenes”, and the sensitivities of the mature visual system appear biased to detect 

the statistically prevalent features [74]. However, the “natural scenes” used to determine 

these natural statistics are not the ego-centric perspective of perceivers as they move 

about the world; rather, they are photographs taken by adults and thus biased by the 

already mature visual system and the mature body that stands still and holds the camera 

to frame a picture. There is as no evidence as to whether the natural statistics of adult 

egocentric scenes align or differ from those of the adult-photographed world, but it seems 
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increasingly likely that those statistics – from the point of view of infants and children -- 

will change with development.

Fig I. 
Egocentric vision is highly selective because it depends on the momentary location and 

posture of the perceiver.

The data for learning changes with development

The infant’s personal view of the world changes as the infant’s sensory-motor abilities 

change. Each new sensory-motor achievement – rolling over, reaching, crawling, walking, 

manipulating objects – opens and closes gates, selecting from the external environment 

different data sets to enter the internal system for learning (Figure 1). Studies using head 

cameras and head-mounted eye-trackers consistently show the tight dependence between the 

infants own developing abilities and visual experience. For example, newborns have limited 

acuity [12] and can do very little with their body. Much of what they see depends on what 

caregivers put in front of and close to the infant’s face. What caregivers often put in front 

their infant is their own face [13–15]. In contrast, an older crawling baby can see much 

farther and can move to a distant object for a closer view. When moving, the crawler creates 

new patterns of dynamic visual information or optic flow [16]. However, when crawling, the 

infant sees only the floor and has to stop crawling and sit up to see social partners or the goal 

object [17, 18]. When older infants manually play with objects they create a data set of many 

different views of a single object, experiences that have been related to advances in object 

recognition and object name learning [19, 20]. Taken together, these studies, which focus on 
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specific behaviors and contexts show that infants changing abilities select and create data for 

learning that changes with development.

These age-related changes in abilities and contexts for learning create large-scale changes in 

the contents of everyday experience. To capture the natural statistics of experience at this 

larger scale, researches have embedded head cameras in hats and sent them home with 

infants to be worn by them during their daily lives [11–15, 21]. Analyses of these home-

collected head-camera images reveal marked changes in infant visual experiences as they 

progress from 1 month to 24 months of age. For example, although people are commonly 

present in the head camera images of very young and older infants, the body parts in view 

change systematically with the age of the head-camera wearer [14]. The images of people 

captured by infants under 3 months of age showed predominantly close and frontal views of 

faces. However, by the time infants reach their first birthday, faces were rarely in the 

captured images [13]. Infants under 3 months of age received an average of 15 minutes of 

face views out of every hour of head-camera recording. In contrast, one-year old infants 

received only 6 minutes of faces views for every hour of head-camera recording. The finding 

that other people’s faces are rarely in the toddler’s egocentric view was a surprising result 

when first reported [22] but one that has now been documented by many different 

researchers in a variety of contexts using both head cameras and head-mounted eye-trackers 

[e.g., 17, 18, 23, 24]. After the first birthday, when people’s faces continue to be rare, 

people’s hands become pervasively present in the infant’s first-person view [11]. In 80% of 

the cases when another person’s hands are in the older infant’s view, those hands are in in 

contact with and acting on an object. The pervasiveness of hands performing instrumental 

acts aligns with these older infants’ increasingly sophisticated manual skills [25] and their 

increasingly sophisticated understanding of the goal-directed manual acts [26].

The learner’s view of the world depends on learner’s posture, location, and behavior. The 

infants body and sensory-motor abilities change systematically and markedly during the first 

two years of post-natal life. These changes create statistical data for learning that are 

partitioned into distinct sets: first faces and then hands (and their instrumental acts on 

objects).

Timing matters

A large literature shows that very young infants are learning a lot about faces. By the end of 

the first 3 months, infants’ visual systems are biased to the specific properties of the specific 

faces in their environments as they preferentially discriminate their caregivers’ faces and 

recognize and discriminate faces that are similar to their caregivers’ in race and gender [27, 

28]. Moreover, studies of infants who do not experience an early visual world dense with 

faces indicate that these early experiences may be critical to the development of mature face 

processing [29–31]. One line of relevant evidence comes from individuals with congenital 

cataracts that were removed by the time they were 4 to 6 months of age [30,31]. These 

individuals lack the early period of visual experience dense with close frontal views of faces. 

Many visual abilities, including some relevant to visual face recognition, show no long-term 

deficits. However, individuals with congenital cataracts removed as early as 4 months show 

permanent deficits in configural face processing. Configural face processing – the sensitivity 
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to second-order relations that adults can use effectively only with upright faces and only 

when low spatial frequencies are present – is a late developing property of the human visual 

system, one that only emerges in childhood and is not fully mature until adolescence. Thus, 

the deficit in early visual experience caused by congenital cataracts is characterized as a 

sleeper effect, a late emerging consequence of a much earlier sensory deprivation [31]. 

Deficits in face processing may not be the only sleeper effects resulting from limited early 

experience with close frontal views of faces. Adults who were born with cataracts removed 

before they were 4 months of age also show deficits in the dynamic processing of sight-

sound synchronies [32]. This deficit may also derive from the lack of the early 

evolutionarily-expected experiences of close faces and the dynamically coupled audio-visual 

experiences caregivers generate when they put their faces in front of those their young 

infants [33].

The findings about the developmentally changing density of faces in infant’s first-person 

views should constrain theories about the internal processes that underlie human face 

processing. In very early infancy, those processes work on substantial but not massive 

amount of data. By the end of the first 3 months, using the estimates of 15 minutes of face 

time per hour and 12 waking hours a day, an infant would have experienced 270 hours of 

predominately close frontal views of faces [13]. The consequences of missing these 270 

hours of experience are permanent deficits that apparently cannot be counteracted by a 

lifetime of seeing faces. Thus, the first three months of postnatal life may be characterized as 

a sensitive period for face processing, a period of development in which specific experiences 

have an out-sized effect on long-term outcome. Sensitive periods may reflect fundamental 

changes in neural plasticity [34]. Developing environments – the gates to sensory input that 

open and close as the infant develops – may also create sensitive periods. Infants who have 

had their cataracts removed at 4 months may not “catch up” in configural face processing 

because they do not encounter the same structured data set: dense close frontal views of 

faces. Because the ego-centric view depends on the infant’s own sensory-motor, cognitive, 

and emotional level of development, the gate on dense close experiences of faces may have 

been closed by the infant’s own more mature behavior and interests.

Sampling is selective

An individual learner samples the information in the world from a localized perspective. 

Thus, of all the faces in the world that an infant might see, she is most likely to see the faces 

of family members because they are often in the same location as the young infant. An 

individual learner also samples the information in the world through the lens of their own 

actions in that world. Thus, of all the cups in a toddler’s house, the toddler who can only 

drink without spilling from a sippy cup, is mostly likely to see that type of cup. An extensive 

literature [21, 35–37] shows that everyday learning environments are characterized by 

frequency distributions in which a very few types (the mother’s face, the sippy cups) are 

very frequent, but most types (all the different faces encountered at a grocery store, all the 

cups in the cupboard) are encountered quite rarely.

Analyses of images from head cameras worn in the home show these characteristic 

extremely-skewed frequency distributions in which a very few instances are highly frequent 
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and most other instances are encountered quite rarely. Thus, the visual world of very young 

infants is not just dense with faces but with the faces of a very few people: just 2 to 3 

individuals account for over 80% of all the images in which faces appear [13]. Although 

older infants’ head camera images have relative few with faces in them, the faces of just 

three individuals account for 80% of the faces that appear [13]. Nonetheless, from this 

highly selective and non-uniform sampling of faces, infants become able to learn to 

recognize and discriminate faces in general. Because these skewed distributions are common 

in natural environments and because infants readily learn in these everyday environments, 

we can be confident that infants are equipped with learning machinery that learns from these 

kinds of data. How does this work?

The frequency distribution of everyday objects captured in infant head-camera images 

provides a case example for thinking about the question. The analyzed images for this case 

example were collected by 8- and 10- month old infants as they went about their daily 

activities [21]. Infants this age are beginning to sit steadily, to crawl, and to play with 

objects, but their manual skills are still quite limited as compared to older infants. Analyses 

of in-home head camera images for these infants suggest that neither faces nor hands acting 

on objects are statistically dominant; instead, their head camera images contain mixture of 

the various body parts of nearby people [11, 14]. Analyses of mealtimes scenes for these 

infants show them to be highly cluttered [21], each scene containing many different objects 

(Figure 2). This clutter poses an interesting theoretical problem. In laboratory studies, 

infants this age look to named objects upon hearing those names [38, 39]. They must have 

learned these names by linking heard names to seen objects. But given highly cluttered 

scenes, how could they know the object being named?

The right-skewed frequency distribution of objects in the images provides a straightforward 

solution to this problem. Of the many objects in each of these cluttered scenes, a very small 

number were pervasively present across the corpus of 8- to 10-month-olds’ mealtime scenes. 

The frequency distribution [Figure 2] was extremely skewed such that a very small number 

of object categories (spoons, bottles, sippy cups, bowls, yogurt) were repeatedly present 

whereas most object categories (jugs, salad tongs, catsup bottles) were present in only a very 

few scenes. The pervasive repetition of instances from a select set of categories could help 

infants find and attend to that select group of categories in the clutter of many other things, 

and in this way provide a foundation for linking those objects to their names [21]. There are 

several interrelated hypotheses as to how the extremely skewered frequency distributions 

may facilitate statistical learning (Figure 3).

Consistency

Learners could just ignore the rarer items and in so doing create a small and consistent 

training set [21]. However, the items that comprise this small high-frequency set are also 

likely to change with development. For example, cheerios but not grapes are pervasive first 

finger foods for 8- to 10-month-old infants who are in danger of choking; in contrast, grapes 

and chicken nuggets are plentiful for two-year-old children. If the high frequency objects in 

the infant’s view change systematically with development, then learners would be presented 

with a series of small lessons of consistent and repeated training items.
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Bootstrapping

Low frequency items may be learned along with high frequency items because they benefit 

being encountered in the context of high frequency items [36, 40, 41]. For example, rarer 

object categories in scenes with high frequency object categories may be segmented more 

robustly even in a cluttered scene. The resolution of ambiguities – such as the partial 

occlusion of a known object by an unknown one -- may be more rapidly resolved because of 

the constraints provided by the better-known higher frequency object.

Desirable difficulties

A general problem in statistical learning is overfitting a solution to the specific items used in 

training. For example, if all the cups a toddler sees are green, then the toddler could use 

color to identify cups. However, the many different low frequency items – that are green but 

not cups – would help prevent this overfitting, enabling the learner to find the right features 

for representing the high frequency items. Properties of training data that would seem to 

make learning more difficult --- clutter or distractors -- but that actually make that learning 

more robust, have been called “desirable difficulties” [42,43].

Infants create a curriculum for learning

Although infants begin learning object names prior to their first birthday, by all indications 

this learning is fragile, errorful, and progresses slowly [ 44–46]. However, the rate and 

nature of learning changes noticeably as infants reach their second birthday [46]. Laboratory 

studies show that 2-year-olds can rapidly infer the extension of a whole category from a 

single instance of that category. For example, if a 2-year-old child encounters their very first 

tractor – say, a green John Deere working in a field – while hearing its name, the child is 

likely from that point forward to recognize all variety of tractors as tractors – red Massey-

Fergusons, rusty antique tractors, ride-on mowers – but not backhoes or trucks [48 – 50]. 

What changes? The child most certainly has changed in cognitive and language skills. The 

visual learning environment has also changed in ways that may support the rapid learning 

and generalization of an object name.

The early slow learning about a few objects and their names before first birthday may be 

Lesson 1. The visual pervasiveness of a select set of objects in a cluttered visual field may 

build strong visual memories for these few things enabling infants them to remember seen 

things and their heard names [44, 51]. Lesson 2 may use very different training data. After 

their first birthday, toddlers’ egocentric views differ from those of 8- to 10- month olds as 

well as from adults. Toddlers visual experiences of objects are shaped by what they can 

manually do with those objects [52–54]: Hand actions on objects create visual scenes in 

which the acted upon objects are visually foregrounded, often centered in the field of view. 

When the toddler acts on the object, the object is visually large (because it is close, given the 

very short arms of toddlers) in the field of view, and by being close and large in the visual 

field, the held object often obscures the clutter in the background. These scenes with a clear 

focal object are often long lasting (c. 4 secs) and coincide with the stilling of head 

movements by the infant [52]. They also invite joint attention with a mature social partner 

and the naming of those objects by the social partner [52, 55]. These less cluttered scenes 
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and the obvious interest of the infant in the held object to the mature partner may be major 

factors in the rate of object name learning after the first birthday. The training data are better 

for 1½-year-old infants than for 10-month-old infants: they contain more frequent naming by 

mature social partners and less visual ambiguity as to the intended referent of the heard 

name.

Other evidence shows that visual object recognition and object name learning co-develop 

[19, 20, 50]. Infants first-person views of their own object manipulations also provides a 

very rich data set for learning about 3-dimensional object shape. The character and 

frequency of toddler object manipulations have been shown to predict object memory, object 

recognition, shape processing, object name learning, and vocabulary size. In brief, toddlers’ 

active manual engagement with objects may create and elicit a learning environment 

specialized for learning about visual objects and their names.

What is a developmental approach to statistical learning?

This review focused on the data for learning from the infant’s perspective and in everyday 

contexts as a corrective to the over-emphasis on the internal learning mechanisms without 

regard to the natural statistics of the learning environment. However, the data for learning 

and the machinery that does that learning cannot be studied separately. The meaning of the 

regularities in infant everyday learning environments can only be determined through the 

learning mechanisms that operate on the data. Many influential approaches to statistical 

learning are inherently non-developmental, assuming a computational problem, a data set, 

and a learning machinery that is more or less constant. Such models cannot exploit the 

developmentally changing and ordered regularities observed in infant visual experience. One 

classic developmental approach to statistical learning that has been implemented in 

computational models is the “starting small” hypothesis [56]: The idea is that infant’s 

learning machinery is limited by weak memory and attentional processes and that these 

weaknesses yield better statistical learning and generalization because only learning only 

operates on the most pervasive statistical regularities. This hypothesis has support [57, 58] 

and may be part of the explanation of why infants in some domains (e.g., language) appear 

better learners than adults. However, the premise of the “starting small” hypothesis is that 

the external data for learning is the same for younger and older learners what differs is their 

internal processes. Thus, these models also do not address the developmental changes in the 

data delivered by the sensory system to that learning machinery.

There are contemporary computational approaches to learning, most of which are not 

concerned with infants, that do consider learning from ordered data sets and thus may 

provide some guidance as to the kinds of models that could exploit the changing content and 

structure in infant perspective scenes. Machine learning approaches such as curriculum 

learning and iterative teaching explicitly seek to optimize learning by ordering the training 

material in time [59–61]. Other approaches model statistical learning and inference in data 

that emerges in time [62, 63]. Active learning approaches focus [64] on the learner’s role in 

selecting the training sequence and how learners could, through their own behavior, select 

the information that is optimal, given the current state of knowledge, for moving learning 

forward. Current approaches within this larger framework include training attention in deep 
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learning networks such that the data selected for learning changes with learning [65] and 

using curiosity to shift attention to new learning problems as learning progresses [67–68].

What is the future of statistical learning? Ego-centric vision is just one approach to studying 

everyday learning environments from the perspective of individual learners [Box 2]. Future 

theories of statistical learning will need to handle these natural developmental statistics by 

connecting the internal machinery with statistics selected by developing learners.

Box 2

Advances in the study of infant environments

The study of infant learning environments is expanding at a rapid pace and in many 

directions. Researchers are using wearable sensors on shoes, motion trackers, and head-

mounted eye trackers, to study the self-generated activities of learning to walk [10, 75]. 

Infant walkers – both skilled and novice – take several thousand steps a day, fall 17 times 

an hour, and rarely walk in a straight line. They walk forward, backward, sideways, and 

typically with no obvious goal for their movement. The training activities for learning to 

walk bear little similarity to traditional assessments of walking skill or to hypotheses 

about how infants become skilled walkers. Other researchers recorded parent talk to 

children in structured play contexts and in unstructured settings [76]. Parents talked 

differently during unstructured and structured activities; during unstructured activities, 

there was more silence, less talk overall, and much less diversity in the words used. Yet 

structured activities with children have thus far been the main contexts for studying 

language learning environments. These and other findings [77] about contextual 

variations in the statistics of parent talk offer a cautionary note that the field may know 

less – or have wrong assumptions – about the statistics for language learning. Fueled by 

the considerable evidence showing that the amount of parent talk in the early years 

determines vocabulary development and future school achievement [78,79], exciting new 

efforts are underway to capture language learning environments at scale using day long 

recording systems [80].

Conclusion

Learning, and development, is a personal journey. The learner’s personal vantage point 

determines the data for learning for that individual. Emerging evidence from studies of 

infant ego-centric vision suggest that the structure of the infant’s changing personal view is 

key to how and why their learning – across so many different tasks – is so robust. From the 

infant’s perspective, different learning problems are segregated in time. There is extensive 

training on a small set of instances and rarer encounters with many others. The infant’s own 

changing sensory-motor abilities open and close environments for learning. The developing 

infant’s increasing autonomy puts the infant in control of generating the data sets for 

learning. The developmental study of the changing statistical structure of learning 

environments may also yield a deeper understanding of individual differences in early 

cognitive development. The source of differences – and interventions to support healthy 

development in all children -- may emerge in part from the developmental structure of the 
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data for learning, data that is determined by the learner’s immediate surroundings and the 

learner’s developing behaviors in those surroundings.
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Highlights

• The nature of the environment that supports learning is fundamental to 

understanding human cognition. Advances in wearable sensors are enabling 

research to study the everyday environments of infants at scale and with 

precision.

• Egocentric vision is an emerging field that uses head cameras and head-

mounted eye trackers to study visual environments from the view of acting 

and moving perceivers.

• Studies of infant visual environments from the first-person view show that 

these environments change systematically with development, effectively 

creating a curriculum for learning.

• The structure of infant visual environments both challenges current 

assumptions of statistical learning and can also inform computational models 

of statistical learning.
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Outstanding questions

• How can we experimentally test whether and how the structures found in 

first-person recordings of infant visual environments provide the required 

curriculum for infant learning?

• What are the real-time properties of data used for learning that change both 

over developmental time and over the learners’ real time activities? How do 

they interact with potentially changing or different learning mechanisms?

• Does the order of developmentally segregated data sets – such as first faces 

and then objects matter to developmental outcomes? Do early face 

experiences support later visual development in other domains, in object 

perception, in letter recognition?

• If sensitive periods are formed in part by the closing of sensory-motor gates 

on critical experiences, can a sensitive period for learning be re-opened by re-

opening those sensory-motor gates?

• What role do disruptions in the real-world data for learning play in the 

cognitive developmental trajectories of children with developmental 

disorders? This will shed light on the cognitive developmental disorders that 

are characterized by atypical patterns of sensory-motor development.
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Fig. 1. The data available for everyday learning changes with development
Statistical learning depends on the data – the training trials experiences of the learner – and 

the learner’s cognitive machinery that does the learning. Contemporary research is focused 

on the nature of the learning machinery and uses two approaches: (a) In human laboratory 

experiments, researchers test hypotheses about internal cognitive processes by creating 

experimental training sets and testing human learners’ abilities to learn from them. (b) In 

human computational studies, researchers build models that instantiate their ideas about the 

learning machinery and feed those models training sets created by the experimenter to tests 

the model’s ability to find the regularities in the input data. Every day learning by infants (c) 

differs substantially from these approaches in the nature of the data for learning. Infants 

encounter data for learning from a specific vantage point that depends on where they the 

location, the body’s posture, and behavior of the infant. Because infant locations, postures, 

and behaviors change systematically with development, the data sets for learning change 

systematically with development. The infants developing abilities – sitting up, crawling, 

walking – open and close gates or visual experiences with different content and different 

statistical structure.
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Fig. 2. The right-skewed frequency distribution of objects in 8- 10-month-old infants’ first-
person views of meal time
(a) The frequency of common objects in head camera images show and extremely skewed 

distribution. The most frequent objects (cup, spoon, bowl) are very frequent but most objects 

in the images rare. This creates a select set of highly frequent visual categories. These high 

frequency objects all have common names are normatively the first nouns that children 

acquire (black dots). The many more rarer objects in these scenes have names normatively 

acquired later in infancy (early words) or in childhood (later nouns). (b) Example images 

show the clutter characteristic of 8- to 10-month old infant’s first person view and illustrates 

the many different and but repeated experiences of a high-frequency object (cup) that infants 

encounter in their everyday experiences.
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Fig. 3. Three hypotheses about how heavy-tailed distributions may support learning
Theoretical frequency distributions are plotted such that the frequency of an object in visual 

scenes is plotted as function of the rank order of frequency of all objects. How might 

learners make use of the data with this distributional structure? One possibility, the 

Consistency hypothesis, is that they learn only about the high frequency items, for example 

only about the high frequency faces and that learning is relatively unaffected by the 

properties of other more rarely encountered faces. A second possibility, the Bootstrapping 

hypothesis, is that learners learn about both the high frequency and low frequency and low 

frequency objects and that learning about the high frequency objects supports learning about 

the other rarer objects. For example, the learner may be better able to visually find a low 

frequency object in clutter (e.g., the book) if it in a context with high frequency visual 

objects. The third hypothesis, Desirable Difficulties, is that learners may learn most robustly 

about the high frequency objects but that learning is helped by encountering the high-

frequency objects (the cup) in many different scenes with many other different objects.
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